
A Disaggregate Data Collecting Approach for
Loss-Tolerant Applications

Ziyuan Liu1,2, Zhixiong Niu2, Ran Shu2, Wenxue Cheng2, Peng Cheng2
Yongqiang Xiong2, Lihua Yuan3, Jacob Nelson2, Dan R. K. Ports2

1Beihang University, 2Microsoft Research, 3Microsoft

ABSTRACT
Datacenter generates operation data at an extremely high
rate, and data center operators collect and analyze them for
problem diagnosis, resource utilization improvement, and
performance optimization. However, existing data collection
methods fail to efficiently aggregate and store data at ex-
tremely high speed and scale. In this paper, we explore a new
approach that leverages programmable switches to aggregate
data and directly write data to the destination storage. Our
proposed data collection system, ALT, uses programmable
switches to control NVMe SSDs on remote hosts without the
involvement of a remote CPU. To tolerate loss, ALT uses an
elegant data structure to enable efficient data recovery when
retrieving the collected data. We implement our system on a
Tofino-based programmable switch for a prototype. Our eval-
uation shows that ALT can saturate SSD’s peak performance
without any CPU involvement.

CCS CONCEPTS
• Networks → In-network processing; • Hardware →
Emerging technologies;

KEYWORDS
Data collection, Programmable switchs, NVM Express, Re-
mote Direct Memory Access

ACM Reference Format:
Ziyuan Liu, Zhixiong Niu, Ran Shu, Wenxue Cheng, Peng Cheng,
Yongqiang Xiong, Lihua Yuan, Jacob Nelson, Dan R. K. Ports. 2022.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
APNet ’22, July 1–2, 2022, Fuzhou, China
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9748-3/22/07. . . $15.00
https://doi.org/10.1145/3542637.3542646

A Disaggregate Data Collecting Approach for Loss-Tolerant Ap-
plications. In Asia-Pacific Workshop on Networking (APNet ’22),
July 1–2, 2022, Fuzhou, China. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3542637.3542646

1 INTRODUCTION
Data collection is a fundamental component in various to-
day’s data center applications, and many of them have great
importance and are working at a considerable scale (e.g.,
EverFlow [41], a passive networking monitoring system de-
ployed in Microsoft, can operate at 380Gbps in one data
center, and Scribe [24], a log service deployed in Facebook,
can operate at 20Tbps globally).

Current data collection methods can be categorized based
on the technology they used, including native network stack,
optimized software [18, 40], and special hardware [36, 39].
Based on our analysis, we find that none of these approaches
can achieve low CPU overhead, cost-efficient, and transpar-
ent to other applications simultaneously.
We achieve all the three aspects in our data collection

system, ALT, showing that they indeed can be fulfilled under
a programmable switch’s help. Our key observation is that
abundant applications which need large-scale data collection
can tolerate loss to some extent because they try to mine
insights from large amounts of data. It alleviates the require-
ment on reliability and allows us to use the resources of a
programmable switch to build a data collection system by
controlling remote memory and storage without the involve-
ment of the host’s CPU. However, it is not easy and there
are several challenges to be addressed.
First, the current programmable switch cannot access re-

mote storage out of the box. Moreover, modern SSDs can
achieve their specification performance only when data size
is a multiplier of 4KiB; otherwise, the performance will drop
significantly (about 10x in our testbed). However, due to
the lack of programmability of packet buffer, current pro-
grammable switches cannot batch data from MTU-level to
4KiB to meet SSD’s requirement. Our insight is that by lever-
aging RDMA and PCIe peer-to-peer communication between
RDMA NIC and SSDs, we can access storage in maximum

https://doi.org/10.1145/3542637.3542646
https://doi.org/10.1145/3542637.3542646

APNet ’22, July 1–2, 2022, Fuzhou, China Z. Liu et al.

performance on the switch with the assistance of the host’s
memory while completely CPU-free in the data path.

Further, to build a post-processing-friendly data collection
system, we want to aggregate data in logical flows. Though it
may be trivial for a general CPU, realizing the same scheme
under a programmable switch’s limited resources is more
challenging. Moreover, though our target applications can
tolerate loss, we still need to consider loss impact carefully
to avoid catastrophic cascade consequences when retriev-
ing data back from storage. By repurposing the multi-level
page table from the OS field and deliberate implementation,
we provide an interface similar to the one used in Scribe.
Additionally, we show that combining two simple ideas, re-
dundancy and alignment, can significantly reduce cascade
impact caused by loss.
We propose and implement a prototype of ALT in P4

using a Tofino-based programmable switch. Our evaluations
show that ALT can collect data in NVMe SSD’s maximum
throughput with completely zero host CPU usage during
data collection, and can mitigate loss impact effectively.

2 BACKGROUND AND RELATEDWORK
This section provides a brief background on loss-tolerant
applications and current data collection methods to motivate
the need for a solution achieving low CPU overhead, cost-
efficiency, and transparency simultaneously. Moreover, this
section introduces programmable switch to help readers bet-
ter understand its ability and constraints, which can explain
some challenges we faced and our design rationales.

2.1 Loss-Tolerant Applications
Due to the tremendous computing power and storage capac-
ity provided by large clouds, data-intensive applications have
their roles in today’s production environment. For example,
EverFlow [41], a passive networking monitoring system de-
ployed in Microsoft, can operate at 380Gbps in one data cen-
ter, and Scribe [24], a log service deployed in Facebook, can
operate at 20Tbps globally. An essential subset of these appli-
cations has loss-tolerant characteristics—some loss of input
data may not change the result of the application. Intuitively,
loss-tolerant is natural for the data-intensive applications
that focus on mining out functional semantics from the data
statistics, where the lost data is negligible compared to the
whole input data volume. Two crucial instances are passive
network telemetry systems and log analysis systems.
Passive network telemetry systems: Passive network

telemetry systems gather data passively by listening to net-
work traffic [33]. Packet-mirror-based monitoring systems
[20, 38, 41], which leverage mirror functionality provided
by commodity switches, are one typical realization of pas-
sive monitoring. Due to the hardware constraints, there is no

guarantee that mirrored packets can be finally transmitted to
the destination. Therefore, such packet-mirror-based teleme-
try systems are loss-tolerant by nature. Another typical real-
ization of passive network telemetry systems is flow-based
monitoring, which only transmits per-flow information to
dedicated servers. Some of them [1, 10] rely on sampling to
reduce the volume of monitored information, which will ac-
tively ignore many packets. Thus they are also loss-tolerant.

Log analysis systems: Log analysis systems are built to
mine insights from amounts of log data in many scenarios,
such as anomaly detection [16, 21, 23] and network debug-
ging [11, 34]. Many such systems are loss-tolerant because
of the process to generate datasets or the adopted analysis
methods. On the one hand, some sampling technologies are
used to reduce the amount of log to be computed [14, 27, 29],
and the data discarded during sampling can be treated as
losses. On the other hand, if data is missing at random, the
missing process can be ignored and the validity of inference
will not be influenced [31]. Therefore, these log analysis
systems also have loss-tolerant characteristics.

2.2 Current Data Collection Methods
Generally speaking, the workflow of data-intensive loss-
tolerant applications is similar to the one of knowledge dis-
covery in database (KDD), which can be divided into 9 steps
[17, 19]. Here we focus on the first step, the gathering part.
Because collecting data does not generate any new infor-
mation, it is important to achieve high performance and
cost-efficiency in this step.
There are three typical data collection methods in our

target loss-tolerant applications: (1) native network stack, (2)
optimized software, and (3) special hardware. However, they
all fall short of simultaneously achieving low CPU overhead,
cost-efficiency, and transparency to other applications.

Native network stack: The native network stack is out-
of-the-box in an operating system, and thus cost-efficient
and transparent to other applications from nature. However,
though researchers and vendors have paid great attention to
the performance of the native network stack, it still induces
considerable CPU overhead to saturate 100Gbps [15]. Things
become worse when it comes to the packet capture scenario.
For example, tcpdump, a popular and wildly used packet
sniffing tool, can only capture packets to NVMe SSDs at less
than 10Gbps and consume more than 4 CPU cores in our
testbed when using the native network stack as backend.

Optimized software: One optimization is implementing
functionalities in user space instead of kernel. For example,
[18, 40] use DPDK [5] to improve their performance while
reducing the CPU overhead. However, transparency to other
applications is usually traded, as optimized software requires

A Disaggregate Data Collecting Approach for Loss-Tolerant Applications APNet ’22, July 1–2, 2022, Fuzhou, China

controlling NIC directly and needs special drivers, which be-
comes an obstacle when deploying them in real production.
Special hardware: The other way to reduce the native

kernel stack overhead is to use a special hardware appliance,
such as FPGA-based packet capture systems [36, 39]. By
executing almost all operations in hardware and their bump-
in-the-wire installation method, these solutions achieve zero
CPU usage and are transparent to existing applications. How-
ever, because the hardware is dedicated, it can only be shared
among limited tasks and are often more expensive than other
standard commodity components in deployment.

In conclusion, our analysis suggests that none of the cur-
rent data collection methods can achieve low CPU overhead,
cost-efficiency, and transparency simultaneously.

2.3 Programmable Switch
Programmable switches are proposed to provide flexibility
in switches’ functionalities. The behavior of such switches
is usually variations of Protocol Independent Switch Ar-
chitecture (PISA) which decomposes the switch data plane
mainly into 2 phases: ingress and egress. In each phase, the
programmability is mainly achieved by many match-action
units, which can take several simple actions (e.g., addition
and subtraction) based on headers and computed data. Addi-
tionally, PISA also allows some fixed-function modules such
as encryption or mirroring to be added by the real imple-
mentation. Users can control the behavior of these modules
by specifying the parameters in the switch program.

In the above description, a programmable switch can oper-
ate packets without persistent states: no information can be
carried across multiple packets. Registers are added to em-
power PISA the ability to change stateful memories during
processing packets.
It should be noted that in real ASIC implementation, the

programmability of PISA is limited. For example, a real pro-
grammable switch can only operate on parsed, limited-length
“headers”. Moreover, the amounts of registers are usually
small, and some ASICs require accessing them in a DAG
manner. Additionally, it is hard to manipulate multiple pack-
ets, such as combining and splitting. Storing a large packet
is also difficult, as the packet buffer is out of the switch pro-
gram’s control (though storing small packets can be achieved
by registers, as we can treat the whole packets as “headers”).

Though the programmability is limited, many recentworks
have demonstrated that under careful design, programmable
switch can bring revolution in amounts of network func-
tions [12, 13, 25, 32] and is suited for offloading partial of
applications to enhance their throughput and scalability
[22, 28, 30, 37]. Additionally, some companies [35] have indi-
cated a trend that programmable switches may become part
of the datacenter’s infrastructure in the future.

Metadata Buffer

DATA CQ State

Controller
CQDB

SQDB

1

RDMA Encapsula�on

Buffer
Allocator

Metadata BufferMETADATA

Switch Control Plane

SQE …

Memory

Data

SQE Generator
3

DATA

CQE Handler
8

SQ State

CQE …

4
SSD

Loss Impact
Mi�ga�on

1

1

2

13

1415

67

10

11
9

D
u

m
p

in
g

D
at

a

NVMe SQ

Data Buffer

NVMe CQ

5
R

N
IC

12

Switch Data Plane

Switch Collector

Figure 1: Summary of workflow in ALT
In this paper, we try to answer the question: is it possible

to use a programmable switch to control servers’ NVMe
devices and further build a post-processing friendly data
collection system achieving low CPU usage, cost-efficiency,
and transparency simultaneously? Fortunately, the answer
is our proposed system, ALT.

3 DESIGN
In this section, we will first present the workflow of ALT
to give a bird-eye view (section 3.1). Then, we describe the
details of ALT in the rest of this section.

3.1 ALT overview
ALT provides users a "logical stream" abstraction to collect
data, which supports append and fetch operations. The data
are written to an array of NVMe devices spread over multiple
hosts under maximum performance of the devices, and the
whole process does not involve the host CPU at all.

Figure 1 illustrates the key components and workflow of
ALT. The programmable switch first adds some metadata
which helps to mitigate the impact caused by packet loss to
create a data record, and then writes it to the buffer block
allocated by the buffer allocator through RDMA (1). When
the buffer allocator detects that there is enough data in a
buffer block, it locks it and notifies the dumping data module
(2) to trigger the interaction with NVMe protocol (3-10, the
details are explained in section 3.2). Meanwhile, it notifies
the control plane to update the metadata structure (12). If
all data of a buffer block has been dumped from memory to
SSD, the block is able to accept new data (11). When there is
enough metadata, a similar procedure applies to metadata
to synchronize the state between the switch and collector’s
SSD (13-14, 3-10, 15).

3.2 Performant Storage Access with Zero
CPU Usage

To access the storage on the remote collector with zero CPU
and reach the maximum bandwidth of a single SSD, we must

APNet ’22, July 1–2, 2022, Fuzhou, China Z. Liu et al.

design a data transmission scheme without the remote col-
lector CPU’s assistance.
NVMe-oF allows a host to access remote NVMe devices

through RDMA, and with some commodity NIC’s help, the
execution of the protocol can be completely offloaded to hard-
ware. At first glance, it is natural to extend TEA’s [26] idea
to implement the NVMe-oF with RDMA on a programmable
switch. However, if the data of an NVMe command is too
large and must be transmitted into multiple RDMA packets,
NVMe-oF requires every data packet to be exactly RDMA
MTU size, except for the last one, which is almost impossi-
ble in a programmable switch. This is mainly because the
programmable switch is difficult to buffer packets to aggre-
gate small data into MTU size. Though padding packets to
MTU size is possible, it is also problematic due to the high
overhead.

The above issues force us to transmit NVMe command and
data in a single RDMA SEND packet to the host. However,
even if we can achieve it, we still encounter performance
issues. The maximum data payload supported by NVMe-oF
in a single RDMA packet is strictly less than 4KiB, which
causes significant degradation of SSD performance, as shown
in section 5.1.

Instead of implementing NVMe over RDMA, the key idea
to achieve our goal is to leverage the remote collector’s mem-
ory as a pipelined buffer for batching small data into a batch
and control SSD through the original NVMe protocol. When
data comes to the programmable switch, the switch data
plane will first use RDMA to transmit the data into the re-
mote memory buffer and monitor the buffer’s occupancy by
one register. When the buffer has enough data, the switch
will interact with the collector’s NVMe protocol through
RDMA to instruct SSD for dumping data from the memory
buffer to SSD. Because we use RDMA in the whole process,
the remote CPU is completely zero during data transmission
and dumping.

The NVMe specification [2] defines the procedure of how
to submit a command and how it should be executed. The
polling version is described following: 1) host submits a com-
mand to one of SSD’s IO Submission Queue; 2) host rings
the Submission Queue’s doorbell to notify SSD’s controller
of new commands; 3) SSD’s controller fetches commands
from the IO Submission Queue and 4) executes them; 5) after
completion, SSD’s controller posts corresponding comple-
tion entries into Completion Queue; 6) then host checks the
content in the Completion Queue; 7) finally, host rings the
Completion Queue’s doorbell to notify SSD controller that
corresponding completion entries can be recycled. In our
design, we use a switch to replace the host in the workflow,
i.e., the 1), 2), 6) and 7), and all interactions between the
switch and SSD’s controller are through RDMA, as shown
in Figure 1, step 3-10.

3.3 Post-processing Friendly Data Structure
Similar to Facebook’s Scribe [24], we aggregate data and pro-
vide “logical stream” abstraction to users. A logical stream is
like a named pipe: each data generator of the logical stream
can “append” data to it. Appended data are stored in a data
structure called data entry. For consumers of a logical stream,
we provide an operation called “tail”, which supports a user
to fetch at most 𝑁 data entries from the current cursor or
from the tail of a logical stream. To realize such abstraction
under zero collector CPU involvement and with high space
efficiency, we must design a metadata structure that is pow-
erful but simple enough to be efficiently manipulated by
switch without the remote CPU’s help.
Metadata Structure We use a 2-level page table (page

directory, page table, and data page), which is originally for
the operating system’s paging system, to describe the map-
ping between the logical address space of a logical stream
to the physical address space of storage. By leveraging the
scheme, we trade some extra space (array for the mapping)
with the ability to dynamically allocate space in the gran-
ularity of pages, which can achieve high space efficiency.
For convenience, we will use {size of page directory}-{size of
page table page}-{size of content page} stands for a specific
2-level page table setting.

Efficient Metadata Manipulation Because metadata is
important, we decide to use the switch’s control plane for
metadata transmission. However, simply storing the whole
page table in control plane memory will cost too much mem-
ory for a logical stream and thus influence the max number
of concurrent streams a switch can support. Our solution for
this issue is to only keep metadata which is mandatory for
append operation in switch (1 entry and its offset for each
level in the 2-level page table), and store the complete 2-level
page table in remote memory/storage.

3.4 Relieve Cascade Effect of Loss
Because DCN’s Ethernet is lossy, packets have no guarantee
to reach their destination. For metadata, due to its impor-
tance and negligible volume compared with data, we could
use SoftRoCE’s RC service in the control plane for reliability,
but it is hard to implement such a mechanism in the data
plane. For example, buffering sent but yet acknowledged
packets is required for reliability, and one can only use regis-
ters in the data plane for buffering. Due to the limited length
one pipeline pass can handle, it requires multiple passes to
buffer a whole packet and introduces considerable overhead.
Nevertheless, some data generators may not even be able to
retransmit the data, e.g., the mirror switch. Thus we choose
to use RDMA UC QP to transmit data into the remote buffer.
Though the data entry loss induced by DCN’s Ethernet may
not hurt loss-tolerant applications’ performance, the key

A Disaggregate Data Collecting Approach for Loss-Tolerant Applications APNet ’22, July 1–2, 2022, Fuzhou, China

Offset 0 d1 d1 + d2

Length d1 d2 d3

(a) Loss impact.

Offset p1 p2 p3 p4

Format of Data Entry

Magic Number p1 p2 p3 Length Data

(b) Reduandancy for recovering from sparse loss, assuming 𝑅 = 3.

Offset 0 B 2B

(c) Alignment for checkpoint. A data record will always be placed at
the beginning of each block.

Figure 2: Loss impact and solutions to mitigate it
challenge here is how to mitigate the cascade effect induced
by loss: a data entry loss will not only influence itself but
also make the following successfully collected data cannot be
retrieved. As shown in Figure 2(a), if the second data entry is
lost during transmission, because we lose the length informa-
tion 𝑑2, we cannot get the address of the third entry 𝑑1 + 𝑑2
and therefore loss the access to it, and all ones following,
though they have been successfully collected. We term this
phenomenon the cascade impact of loss.
Our solutions for this issue are twofold: redundancy for

recovering from sparse loss, and alignment for checkpoint.
Redundancy for Recovering from Sparse Loss: For

sparse loss events, our observation is that the probability of
losing several consecutive data entries would be low. There-
fore, we could encode several previous data entries’ addresses
into the current data entry’s header, and recover from loss
if one address matches any one of the known entries, as
shown in Figure 2(b). When a loss occurs, we try to search
the magic number to locate a potential beginning of a data
entry. To avoid that the found magic number is just part of
the data, we compare the encoded address of previous data
entries with known ones. If some of them match, we can be
confident that the found beginning is valid and recover from
the loss. With this technology, we can reduce the loss ratio
exponentially.

Alignment for Checkpoint: For sparse loss events, we
can recover from loss by inference from known entries and
redundant information. However, when a burst loss – which
losses more than 𝑅 successive packets – happens, there will
be no known entries for correct inference. To mitigate this
issue, we divided a data page into several blocks, and assure
there will always be a data entry placed at beginning of each

block, as shown in Figure 2(c). It should be noted that even if
the aligned data entry itself can be lost during transmission,
its address information is treated as known and can be used
in the recovery process described above. When consecutive
losses happen, the redundancy policy fails and all following
data cannot be retrieved. By providing a known entry using
alignment, this technology “resets” the impact of loss, and
thus reduces the loss ratio.

4 IMPLEMENTATION
We have implemented an ALT prototype in P4 using a com-
modity programmable switch, Arista 7170 series. For fast
prototyping, we implement almost all designed data plane
functionalities but use SoftRoCE in the switch’s control plane
to realize the NVMe workflow.
In the original workflow, the CPU needs to write some

SSD’s MMIO registers (SQ and CQ doorbell), but these regis-
ters are not RDMAable in the existing API. We leverage Mel-
lanox’s PeerDirect [7] technology, which is used in GPUDi-
rect [4] to provide the ability for a Mellanox NIC to access
peer devices’ memory without CPU, to expose the NVMe
Controller Registers BAR region as an RDMAable memory.

We leverage the switch’s mirror mechanism to inject con-
trol signal packets from the data plane to trigger the multi-
phased NVMe workflow. For the control signal, the data in
the original packet is meaningless, therefore we truncate it
to reduce the bandwidth requirement.

On collector host, we use an SPDK program to reserve one
of SSD’s SQs and CQs for ALT usage. Note that the program
is only activated during the initialization and tear down
phase, and isn’t involved in data transmission completely.

5 EVALUATION
We evaluate ALT on a programmable switch testbed under
synthetic packet traces. Our key findings are:

• For a single NVMe SSD, ALT can saturate it with com-
pletely zero CPU usage during data transmission.

• Even a low network loss ratio (0.01%) can cause con-
siderable data integrity issue (about 12% data cannot
be retrieved). With ALT’s loss impact mitigation tech-
nologies, more than 98% data can be preserved under
1% network loss ratio, and more than 90% even under
10% network loss ratio. The CPU overhead induced by
these technologies is close to a memory copy (2% per
Gbps) when the network loss ratio is low (0.01%).

Experimental setup. Our testbed consists of a Arista 7170-
64C programmable switch [3] and 2 machines with dual
10-core Intel Xeon Silver 4114 at 2.20 GHz (40 logical cores
in total), 48 GB RAM, a 100 Gbps Mellanox CX-5 NIC [6]
and 10 Samsung PM983 960 GB NVMe SSDs [9]. The servers
run Ubuntu 18.04 with kernel version 4.15.0. All servers are

APNet ’22, July 1–2, 2022, Fuzhou, China Z. Liu et al.

0

10

20

30

40

64B 512B 1024B

of

 C
P

U
 C

or
es

Packet Size

ALT tcpdump

dpdk-pcap NVMe-oF TO

(a) CPU Usage

0

5

10

64B 512B 1024B
G

oo
dp

ut
 (

G
bp

s)
Packet Size

ALT tcpdump

dpdk-pcap NVMe-oF TO

(b) Goodput

Figure 3: Performance of ALT on Single SSD

directly connected to the switch. We use 1 server as the
data generator and 1 as the collector. In all experiments, we
use 4KiB-4KiB-4MiB metadata structure setting, redundancy
factor 𝑅 = 3, and 256KiB block size in alignment.

5.1 Single SSD Performance
For clearness, we use two typical packet sizes in DCN, 64B
and 1024B, to compare ALT with three baselines, NVMe-oF
Target Offload (hardware implementation of NVMe-oF target
side, provided by some advance RDMA NIC) [8], tcpdump
and DPDK testpmd + pdump. Additionally, because almost
all commodity SSDs require 512B as the minimum block size,
it is impossible to test the performance of NVMe-oF Target
Offload under 64B packet size, thus we add 512B to meet
SSDs’ minimum requirement. We use fio to generate traffic
for NVMe-oF Target Offload, and DPDK Pktgen for others.
In both tools, we rate limit the traffic to 10Gbps, which can
saturate the maximum bandwidth of the SSD model we use.
Figure 3(a) shows the collector side CPU usage. When

packet size is small, tcpdump can eat up almost all CPU
cores, and it is mitigated when packet size is larger. The
root cause is that NIC’s IRQ needs amounts of CPU cores,
especially when packet size is small. DPDK testpmd + pdump
always use 2 cores: 1 for testpmd and 1 for pdump. ALT and
NVMe-oF Target Offload have zero CPU usage because they
are hardware-based solutions, as expected.
Figure 3(b) shows the goodput achieved by different sys-

tems. NVMe-oF Target Offload demonstrates very poor per-
formance because of the physical characteristics of SSDs.
They could only reach a reasonable performance when the
block size of a single write is 4KiB, and some model needs a
larger block size (e.g., 128KiB) to reach their optimal write
performance. The result shows the necessity of aggregating
small packets into a larger one when using SSDs, as done
in ALT. tcpdump and DPDK testpmd + pdump show similar
behavior when packet size varies. ALT outperforms other
systems. The gap between its performance and the maxi-
mum bandwidth of the SSD model is due to the data entry
header and fields to mitigate data loss impact. Taking it into
consideration, ALT can saturate our SSD model.

0.0

0.2

0.4

0.6

0.8

1.0

0.00% 0.01% 0.10% 1% 10%

R
ec

al
l R

at
io

Network Loss Ratio

none w/ redun w/ align ALT

Figure 4: Performance of ALT’s loss mitigation tech-
nologies

5.2 Loss Impact Mitigation
According to section 3.4, without any mitigation, all data
records after the lost one on the same data page cannot be
retrieved. To demonstrate the impact of loss and the effec-
tiveness of our approaches, we measure the recall ratio of
data under different network loss ratios. The recall ratio is
defined as the number of retrieved data records divided by
the number of received data records. Supposing the network
loss ratio is 𝑙 , and the recall ratio is 𝑟 , the user can get 𝑙 × 𝑟

portion of the data records.
We evaluate the recall ratio of the baseline algorithm,

which doesn’t have any mitigation, and ALT’s algorithm
under 0.01%, 0.1%, 1% and 10% network loss ratio to show our
proposals’ effectiveness. We also compare redundancy only
and alignment only algorithms for the breakdown analysis.
Figure 4 shows the recall ratio. We see that when the

network loss ratio increases, the recall ratio for the baseline
algorithm drops greatly. The ALT’s solutions to mitigate loss
can achieve almost 100% recall ratio and more than 90% even
under 10% network loss. The breakdown analysis shows that
the improvement mainly comes from the redundancy, as it
can achieve almost 100% recall ratio under 0.1% loss ratio
and more than 98% under 1% loss. When the network loss
ratio becomes large, the combination of redundancy and
alignment outperforms any single scheme.

6 CONCLUSION
Data collection is fundamental to many data center appli-
cations, however, none of the current methods can simul-
taneously achieve low CPU utilization, cost-efficiency, and
transparency, which may become an obstacle in deployment.
To address this issue, we proposed ALT, for large-scale data
collection of loss-tolerant applications. ALT provides users
a logical stream abstraction to collect data and uses a pro-
grammable switch to control NVMe devices on rack servers
directly. Our evaluation shows that ALT can collect data
without hosts’ CPU involvement and mitigate cascade loss
impact effectively.

A Disaggregate Data Collecting Approach for Loss-Tolerant Applications APNet ’22, July 1–2, 2022, Fuzhou, China

REFERENCES
[1] 2004. Cisco Systems NetFlow Services Export Version 9. https://datatr

acker.ietf .org/doc/html/rfc3954. (2004).
[2] 2021. NVM Express Base Specification, Revision 1.4b. https://nvmexp

ress.org/wp-content/uploads/NVM-Express-1_4b-2020.09.21-Ratifie
d.pdf. (2021).

[3] 2022. Arista 7170 Series - Arista. https://www.arista.com/en/products
/7170-series. (2022).

[4] 2022. GPUDirect | NVIDIA Developer. https://developer.nvidia.com/g
pudirect. (2022).

[5] 2022. Home - DPDK. https://www.dpdk.org/. (2022).
[6] 2022. NVIDIA Mellanox ConnectX-5 Adapters | NVIDIA. https:

//www.nvidia.com/en-us/networking/ethernet/connectx-5/. (2022).
[7] 2022. NVIDIA PeerDirect - MLNX_OFED v5.4-1.0.3.0 - NVIDIA Net-

working Docs. https://docs.nvidia.com/networking/display/MLNXO
FEDv541030/NVIDIA+PeerDirect. (2022).

[8] 2022. NVME-oF - NVM Express over Fabrics - MLNX_EN v5.1-1.0.4.0
- NVIDIA Networking Docs. https://docs.nvidia.com/networking/dis
play/MLNXENv511040/NVME-oF+-+NVM+Express+over+Fabrics.
(2022).

[9] 2022. Samsung Enterprise SSD 983 DCT M.2 960GB | MZ-1LB960NE |
for Business. https://www.samsung.com/us/business/computing/me
mory-storage/enterprise-solid-state-drives/983-dct-960gb-mz-1lb9
60ne/. (2022).

[10] 2022. sFlow.org - Making the Network Visible. https://sflow.org/inde
x.php. (2022).

[11] Shridhar Allagi and Rashmi Rachh. 2019. Analysis of Network log
data using Machine Learning. In IEEE I2CT (2019). IEEE.

[12] Tom Barbette, Chen Tang, Haoran Yao, Dejan Kostić, Gerald Q
Maguire Jr, Panagiotis Papadimitratos, and Marco Chiesa. 2020. A
high-speed load-balancer design with guaranteed per-connection-
consistency. In USENIX NSDI (2020).

[13] Ran Ben Basat, Sivaramakrishnan Ramanathan, Yuliang Li, Gianni An-
tichi, Minian Yu, and Michael Mitzenmacher. 2020. Pint: Probabilistic
in-band network telemetry. In ACM SIGCOMM (2020).

[14] Gaël Bernard and Periklis Andritsos. 2021. Selecting representative
sample traces from large event logs. In IEEE ICPM (2021). IEEE.

[15] Qizhe Cai, Shubham Chaudhary, Midhul Vuppalapati, Jaehyun Hwang,
and Rachit Agarwal. 2021. Understanding host network stack over-
heads. In ACM SIGCOMM (2021).

[16] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. 2017. Deeplog:
Anomaly detection and diagnosis from system logs through deep
learning. In ACM CCS (2017).

[17] Alessandro D’Alconzo, Idilio Drago, Andrea Morichetta, Marco Mellia,
and Pedro Casas. 2019. A survey on big data for network traffic
monitoring and analysis. IEEE Trans. Netw. Service Manag. 16, 3 (2019),
800–813.

[18] Paul Emmerich, Maximilian Pudelko, Sebastian Gallenmüller, and
Georg Carle. 2017. Flowscope: Efficient packet capture and storage in
100 gbit/s networks. In IEEE IFIP Networking (2017). IEEE.

[19] Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. 1996.
From data mining to knowledge discovery in databases. AI magazine
17, 3 (1996), 37–37.

[20] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, David Maz-
ières, and Nick McKeown. 2014. I know what your packet did last
hop: Using packet histories to troubleshoot networks. In USENIX NSDI
(2014).

[21] Shilin He, Jieming Zhu, Pinjia He, and Michael R Lyu. 2016. Experience
report: System log analysis for anomaly detection. In IEEE ISSRE (2016).
IEEE.

[22] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate
Foster, Changhoon Kim, and Ion Stoica. 2017. Netcache: Balancing
key-value stores with fast in-network caching. In ACM SOSP (2017).

[23] Antti Juvonen, Tuomo Sipola, and Timo Hämäläinen. 2015. Online
anomaly detection using dimensionality reduction techniques for
HTTP log analysis. Computer Networks 91 (2015), 46–56.

[24] Manolis Karpathiotakis, Dino Wernli, and Milos Stojanovic. 2019.
Scribe: Transporting petabytes per hour via a distributed, buffered
queueing system. https://engineering.fb.com/2019/10/07/data-infrast
ructure/scribe/. (2019).

[25] Changhoon Kim, Anirudh Sivaraman, Naga Katta, Antonin Bas, Advait
Dixit, and Lawrence J Wobker. 2015. In-band network telemetry via
programmable dataplanes. In ACM SIGCOMM (2015).

[26] Daehyeok Kim, Zaoxing Liu, Yibo Zhu, Changhoon Kim, Jeongkeun
Lee, Vyas Sekar, and Srinivasan Seshan. 2020. Tea: Enabling state-
intensive network functions on programmable switches. In ACM SIG-
COMM (2020).

[27] Bram Knols and Jan Martijn EM van der Werf. 2019. Measuring the
behavioral quality of log sampling. In IEEE ICPM (2019). IEEE.

[28] ChonLam Lao, Yanfang Le, Kshiteej Mahajan, Yixi Chen, Wenfei Wu,
Aditya Akella, and Michael M Swift. 2021. ATP: In-network Aggrega-
tion for Multi-tenant Learning.. In USENIX NSDI (2021).

[29] Cong Liu, Yulong Pei, Long Cheng, Qingtian Zeng, and Hua Duan.
2021. Sampling business process event logs using graph-based ranking
model. Concurrency and Computation: Practice and Experience 33, 5
(2021), e5974.

[30] Zaoxing Liu, Zhihao Bai, Zhenming Liu, Xiaozhou Li, Changhoon Kim,
Vladimir Braverman, Xin Jin, and Ion Stoica. 2019. Distcache: Provable
load balancing for large-scale storage systems with distributed caching.
In USENIX FAST (2019).

[31] Benjamin Marlin. 2008. Missing data problems in machine learning.
Ph.D. Dissertation.

[32] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan
Yu. 2017. Silkroad: Making stateful layer-4 load balancing fast and
cheap using switching asics. In ACM SIGCOMM (2017).

[33] Venkat Mohan, YR Janardhan Reddy, and K Kalpana. 2011. Active
and passive network measurements: a survey. Int. J. Comput. Sci. Inf.
Technol. 2, 4 (2011), 1372–1385.

[34] Kazuki Otomo, Satoru Kobayashi, Kensuke Fukuda, and Hiroshi Esaki.
2021. Latent semantics approach for network log analysis: modeling
and its application. In IFIP/IEEE IM (2021). IEEE.

[35] Tian Pan, Nianbing Yu, Chenhao Jia, Jianwen Pi, Liang Xu, Yisong
Qiao, Zhiguo Li, Kun Liu, Jie Lu, Jianyuan Lu, et al. 2021. Sailfish:
Accelerating cloud-scale multi-tenant multi-service gateways with
programmable switches. In ACM SIGCOMM (2021).

[36] Siyi Qiao, Chen Xu, Lei Xie, Ji Yang, Chengchen Hu, Xiaohong Guan,
and Jianhua Zou. 2014. Network recorder and player: FPGA-based
network traffic capture and replay. In IEEE FPT (2014). IEEE.

[37] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis,
Changhoon Kim, Arvind Krishnamurthy, Masoud Moshref, Dan Ports,
and Peter Richtarik. 2021. Scaling Distributed Machine Learning with
In-Network Aggregation. In USENIX NSDI (2021).

[38] Olivier Tilmans, Tobias Bühler, Ingmar Poese, Stefano Vissicchio, and
Laurent Vanbever. 2018. Stroboscope: Declarative network monitoring
on a budget. In USENIX NSDI (2018).

[39] Juan Camilo Vega, Marco Antonio Merlini, and Paul Chow. 2020. FF-
Shark: a 100G FPGA implementation of BPF filtering for Wireshark.
In IEEE FCCM (2020). IEEE.

[40] Tianzhu Zhang, Leonardo Linguaglossa, Massimo Gallo, Paolo Giac-
cone, and Dario Rossi. 2018. FlowMon-DPDK: Parsimonious per-flow
software monitoring at line rate. In IEEE TMA (2018). IEEE.

https://datatracker.ietf.org/doc/html/rfc3954
https://datatracker.ietf.org/doc/html/rfc3954
https://nvmexpress.org/wp-content/uploads/NVM-Express-1_4b-2020.09.21-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-1_4b-2020.09.21-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-1_4b-2020.09.21-Ratified.pdf
https://www.arista.com/en/products/7170-series
https://www.arista.com/en/products/7170-series
https://developer.nvidia.com/gpudirect
https://developer.nvidia.com/gpudirect
https://www.dpdk.org/
https://www.nvidia.com/en-us/networking/ethernet/connectx-5/
https://www.nvidia.com/en-us/networking/ethernet/connectx-5/
https://docs.nvidia.com/networking/display/MLNXOFEDv541030/NVIDIA+PeerDirect
https://docs.nvidia.com/networking/display/MLNXOFEDv541030/NVIDIA+PeerDirect
https://docs.nvidia.com/networking/display/MLNXENv511040/NVME-oF+-+NVM+Express+over+Fabrics
https://docs.nvidia.com/networking/display/MLNXENv511040/NVME-oF+-+NVM+Express+over+Fabrics
https://www.samsung.com/us/business/computing/memory-storage/enterprise-solid-state-drives/983-dct-960gb-mz-1lb960ne/
https://www.samsung.com/us/business/computing/memory-storage/enterprise-solid-state-drives/983-dct-960gb-mz-1lb960ne/
https://www.samsung.com/us/business/computing/memory-storage/enterprise-solid-state-drives/983-dct-960gb-mz-1lb960ne/
https://sflow.org/index.php
https://sflow.org/index.php
https://engineering.fb.com/2019/10/07/data-infrastructure/scribe/
https://engineering.fb.com/2019/10/07/data-infrastructure/scribe/

APNet ’22, July 1–2, 2022, Fuzhou, China Z. Liu et al.

[41] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg, Guohan Lu,
Ratul Mahajan, Dave Maltz, Lihua Yuan, Ming Zhang, Ben Y Zhao,

et al. 2015. Packet-level telemetry in large datacenter networks. In
ACM SIGCOMM (2015).

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Loss-Tolerant Applications
	2.2 Current Data Collection Methods
	2.3 Programmable Switch

	3 Design
	3.1 ALT overview
	3.2 Performant Storage Access with Zero CPU Usage
	3.3 Post-processing Friendly Data Structure
	3.4 Relieve Cascade Effect of Loss

	4 Implementation
	5 Evaluation
	5.1 Single SSD Performance
	5.2 Loss Impact Mitigation

	6 Conclusion
	References

