
Census:
Location-Aware Membership Management

 for Large-Scale Distributed Systems

James Cowling Dan R. K. Ports Barbara Liskov
Raluca Ada Popa Abhijeet Gaikwad*

MIT CSAIL *École Centrale Paris

Motivation

Large-scale distributed systems becoming more common
 multiple datacenters, cloud computing, etc.

Reconfigurable distributed services adapt as
nodes join, leave, or fail

A membership service that tracks changes in
system membership can simplify system design

Census

A platform for building large-scale, distributed applications

Two main components:
 Membership service
 Multicast communication mechanism

Designed to work in the wide-area
 Locality-aware; fault tolerant

Membership Service

Time divided into sequential, fixed-duration epochs

Each epoch has a membership view:
 List of nodes (ID, IP address, location, etc.)

Consistency property:
every node sees the same membership view
for a particular epoch

➡ can simplify protocol design (e.g. partitioning storage)

Consistency & Scalability

Existing systems:
tradeoff between consistency and scalability

Examples:
- virtual synchrony (e.g. ISIS, Spread)
- distributed hash tables (e.g. Chord, Pastry)

Census provides consistent membership views
and is designed for large-scale, wide-area systems

Membership Service: Basic Approach

•Designate one
node as leader

Membership Service: Basic Approach

•Designate one
node as leader

•Nodes report
membership
changes to
leader

Membership Service: Basic Approach

•Designate one
node as leader

•Nodes report
membership
changes to
leader

•Leader
aggregates
changes;
multicasts item

Membership Service: Basic Approach

•Designate one
node as leader

•Nodes report
membership
changes to
leader

•Leader
aggregates
changes;
multicasts item

•Members enter
next epoch,
update
membership

What are the Challenges?

Delivering items efficiently and reliably
➡ Multicast mechanism

Reducing load on the leader

➡ Multi-region structure

Dealing with leader failure

➡ Fault tolerance

Outline

• Overview
• Basic Approach
• Multicast Mechanism
• Multi-region Design
• Fault Tolerance
• Evaluation

Multicast Mechanism

Need multicast to distribute membership updates
and application data efficiently

Goals: high reliability, low latency, fair load balancing

Many multicast protocols exist...

Census takes a different approach
 exploits consistent membership information
 for a simpler design and lower overhead

Multicast Topology

Multiple interior-disjoint trees (similar to SplitStream)
 Each node interior in one tree, leaf in others

Membership data distributed in full on each tree.
Application's multicast data erasure-coded

Improved reliability and load balancing vs. a single tree

Multicast Topology

14

Multicast Topology

15

Multicast Topology

Building Multicast Trees

Exploit consistent membership knowledge:
tree structure given by deterministic function of membership

➡ Allows simple “centralized” algorithm in distributed context

Nodes independently recompute trees “on-the-fly”,
upon receiving membership updates

No protocol overhead beyond that of membership service
(even during churn!)

Tree Building Algorithm

Tree Building Algorithm

d(x,y) ≈ latency(x,y)

Background: network coordinates (e.g. Vivaldi)

Tree Building Algorithm
Assign nodes to a tree (color) based on ID

Building the Red Tree
Split region through center of mass, along widest axis

Building the Red Tree
Choose closest red node in each subregion, attach to root

Building the Red Tree
Recursively subdivide each subregion in the same way

Building the Red Tree
Recursively subdivide each subregion in the same way

Building the Red Tree
Recursively subdivide each subregion in the same way

Building the Red Tree
Recursively subdivide each subregion in the same way

Building the Red Tree
Recursively subdivide each subregion in the same way

Building the Red Tree
Attach other-colored nodes to the nearest available red node

Multicast Improvements

Reduce bandwidth overhead
– avoid sending redundant data

Reduce multicast latency
– choose fragments to send based on expected path length

Improve reliability during failures
– reconstruct missing fragments from other trees

Outline

• Overview
• Basic Approach
• Multicast Mechanism
• Multi-region Design
• Fault Tolerance
• Evaluation

Multi-Region Structure
Divide large deployments into location-based regions

Multi-Region Structure
One region leader per region, plus global leader

Multi-Region Structure
Region leaders aggregate membership changes from region

Multi-Region Structure
Region leaders aggregate membership changes from region

Multi-Region Structure
Global leader combines region reports to produce item

Region Dynamics

Regions split when they grow too large
 Global leader signals split in the next item
 Nodes independently split region across widest axis
 using consistent membership knowledge

Regions merge when one grows too small
 Similar process

Nodes assigned to nearest region on joining

Multi-Region Structure

Benefits
– fewer messages processed by leader
– fewer wide-area communications
– cheaper multicast tree computation
– useful abstraction for applications

Partial Knowledge
Maintaining global membership knowledge is usually feasible

Except: very large, dynamic, and/or bandwidth-constrained
systems

Partial knowledge:
 each node knows only the membership of its own region
 and summary information of other regions

Outline

• Overview
• Basic Approach
• Multicast Mechanism
• Multi-region Design
• Fault Tolerance
• Evaluation

Fault Tolerance

Global leader and region leaders can fail

Solution: replication
 Use standard state machine replication techniques

 Replication level based on expected concurrent failures

Optional: tolerating Byzantine faults

Outline

• Overview
• Basic Approach
• Multicast Mechanism
• Multi-region Design
• Fault Tolerance
• Evaluation

Evaluation

PlanetLab deployment
 614 nodes

Theoretical analysis
 scalability to larger systems

Simulator
 evaluate multicast performance

PlanetLab Deployment
614 nodes; 30 second epochs; 1 KB/epoch multicast

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140M
e

a
n

 b
a

n
d

w
id

th
 p

e
r

n
o

d
e

 (
K

B
/s

)

Time (epochs)

 0

 100

 200

 300

 400

 500

 600

 0 20 40 60 80 100 120 140

R
e

p
o

rt
e

d
 m

e
m

b
e

rs
h

ip
 (

n
o

d
e

s)

Time (epochs)

10%
failed

25%
failed

Bandwidth usage
Multicast data size

Bandwidth Overhead
Membership management cost analysis
Very high churn rate (avg. node lifetime 30 minutes)

0.01

0.1

1

10

100 1000 10000 100000

Global Leader Region Leader Regular Node

0.01

0.1

1

10

100 1000 10000 100000

B
a
n
d
w

id
th

 O
v
e
rh

e
a
d
 (

K
B

/s
)

Number of Nodes Number of Nodes

Multiple Regions Partial Knowledge

Multicast Reliability
Fraction of nodes successfully receiving multicast
Simulation results (10,000 nodes)

0

0.2

0.4

0.6

0.8

1

0.01 0.1 1

Su
cc

es
s

Ra
te

8/16 coding (data)12/16 coding (data) 16 trees (membership)

Fraction of Bad Nodes

Multicast Performance
Stretch: multicast latency / ideal (unicast) latency
1740-node measurement-derived topology

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

C
u

m
u

la
ti
v
e

 F
ra

c
ti
o

n
 o

f
N

o
d

e
s

Stretch

Conclusion

Census: a platform for membership management and
communication in large distributed systems

Provides consistent views while scaling to extreme sizes
 Support future wide-scale distributed applications

Builds on an efficient multicast mechanism
 High reliability, low latency, low bandwidth overhead

Exploit consistent knowledge
 High performance while avoiding complexity

Conclusion

Census: a platform for membership management and
communication in large distributed systems

Provides consistent views while scaling to extreme sizes
 Support future wide-scale distributed applications

Builds on an efficient multicast mechanism
 High reliability, low latency, low bandwidth overhead

Exploit consistent knowledge
 High performance while avoiding complexity

Thank you. Questions?

