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Abstract
We present Census, a platform for building large-scale

distributed applications. Census provides a membership
service and a multicast mechanism. The membership ser-
vice provides every node with a consistent view of the sys-
tem membership, which may be global or partitioned into
location-based regions. Census distributes membership
updates with low overhead, propagates changes promptly,
and is resilient to both crashes and Byzantine failures. We
believe that Census is the first system to provide a consis-
tent membership abstraction at very large scale, greatly
simplifying the design of applications built atop large
deployments such as multi-site data centers.

Census builds on a novel multicast mechanism that is
closely integrated with the membership service. It orga-
nizes nodes into a reliable overlay composed of multiple
distribution trees, using network coordinates to minimize
latency. Unlike other multicast systems, it avoids the cost
of using distributed algorithms to construct and maintain
trees. Instead, each node independently produces the
same trees from the consistent membership view. Census
uses this multicast mechanism to distribute membership
updates, along with application-provided messages.

We evaluate the platform under simulation and on a
real-world deployment on PlanetLab. We find that it
imposes minimal bandwidth overhead, is able to react
quickly to node failures and changes in the system mem-
bership, and can scale to substantial size.

1 Introduction
Today’s increasingly large-scale distributed systems must
adapt to dynamic membership, providing efficient and
reliable service despite churn and failures. Such systems
typically incorporate or rely on some sort of membership
service, which provides the application with information
about the nodes in the system. The current shift toward
cloud computing and large multi-site data centers provides
further motivation for a system designed to manage node
membership at this large scale.

Many membership services exist, with varying seman-
tics. Some, such as those based on virtual synchrony, pro-
vide strict semantics, ensuring that each node sees a con-
sistent view of the system membership, but operate only at
small scales [3, 14, 37]. Because maintaining consistency
and global membership knowledge is often perceived as
prohibitively expensive, many recently proposed systems
provide weaker semantics. These systems provide greater
scalability, but make no guarantees about members having
consistent views [16, 17], and some provide only partial
views of system membership [36, 23, 32].

We argue that it is both feasible and useful to maintain
consistent views of system membership even in large-
scale distributed systems. We present Census, a new
platform for constructing such applications, consisting
of a membership management system and a novel multi-
cast mechanism. The membership management system
follows the virtual synchrony paradigm: the system di-
vides time into epochs, and all nodes in the same epoch
have identical views of system membership. This glob-
ally consistent membership view represents a powerful
abstraction that simplifies the design of applications built
atop our platform. In addition to eliminating the need for
applications to build their own system for detecting and
tracking membership changes, globally consistent views
can simplify application protocol design.

Census is designed to work at large scale, even with
highly-dynamic membership, and to tolerate both crashes
and Byzantine failures. It uses three main techniques to
achieve these goals.

First, Census uses a locality-based hierarchical organi-
zation. Nodes are grouped into regions according to their
network coordinates. Even in small systems, this hierar-
chical structure is used to reduce the costs of aggregating
reports of membership changes. For systems so large that
it is infeasible to maintain a global membership view, we
provide a partial knowledge deployment option, where
nodes know the full membership of their own region but
only a few representative nodes from each other region.



Second, Census uses a novel multicast mechanism that
is closely intertwined with the membership management
service. The membership service relies on the multi-
cast mechanism to distribute update notifications, and
the multicast system constructs its distribution trees us-
ing node and location information from the membership
service. The overlay topology, made up of redundant
interior-disjoint trees, is similar to other systems [7, 40].
However, the trees are constructed in a very different way:
each node independently carries out a deterministic tree
construction algorithm when it receives a membership
update. This eliminates the need for complex and poten-
tially expensive distributed tree-building protocols, yet
it produces efficient tree structures and allows the trees
to change frequently to improve fault-tolerance. We also
take advantage of global membership and location infor-
mation to keep bandwidth overhead to a minimum by
ensuring that each node receives no redundant data, while
keeping latency low even if there are failures.

Finally, Census provides fault-tolerance. Unlike sys-
tems that require running an agreement protocol among
all nodes in the system [30, 20], Census uses only a small
subset of randomly-chosen nodes, greatly reducing the
costs of membership management while still providing
correctness with high probability. In most cases, we use
lightweight quorum protocols to avoid the overhead of
full state machine replication. We also discuss several
new issues that arise in a Byzantine environment.

Census exposes the region abstraction and multicast
mechanism to applications as additional services. Regions
can be a useful organizing technique for applications.
For example, a cooperative caching system might use
regions to determine which nodes share their caches. The
multicast system provides essential functionality for many
applications that require membership knowledge, since a
membership change may trigger a system reconfiguration
(e.g. changing responsible nodes in a distributed storage
system) that must be announced to all nodes.

Our evaluation of Census, under simulation and in a
real-world deployment on PlanetLab, indicates that it
imposes low bandwidth overhead per node (typically less
than 1 KB/s even in very large systems), reacts quickly to
node failures and system membership changes, and can
scale to substantial size (over 100,000 nodes even in a
high-churn environment).

The remainder of this paper is organized as follows.
We define our assumptions in Section 2. Sections 3–5
describe Census’s architecture, multicast mechanism, and
fault-tolerance strategy in detail. Section 6 presents per-
formance results based on both theoretical analysis and a
deployment on PlanetLab. We sketch some ways appli-
cations can use the platform in Section 7, discuss related
work in Section 8, and conclude in Section 9.

2 Model and Assumptions
Census is intended to be used in an asynchronous network
like the Internet, in which messages may be corrupted,
lost or reordered. We assume that messages sent repeat-
edly will eventually be delivered. We also assume nodes
have loosely synchronized clock rates, such that they can
approximately detect the receipt of messages at regular
intervals. Loosely synchronized clock rates are easy to
guarantee in practice, unlike loosely synchronized clocks.

Every node in our platform has an IP address, a unique
random ID, and network coordinates. Tolerating Byzan-
tine failures adds a few more requirements. Each node
must have a public key, and its unique ID is assigned by
taking a collision-resistant hash of the public key. Fur-
thermore, we require admission control to prevent Sybil
attacks [13], so each joining node must present a certifi-
cate signed by a trusted authority vouching for its identity.

All nodes have coordinates provided by a network co-
ordinate system such as Vivaldi [11]. We describe the
system in terms of a two-dimensional coordinate system
plus height, analogous to the last-hop network delay. This
follows the model used in Vivaldi, but our system could
easily be modified to use a different coordinate space.
We assume coordinates reflect network latency, but their
accuracy affects only performance, not correctness.

Traditional network coordinate systems do not function
well in a Byzantine environment since malicious nodes
can influence the coordinates of honest nodes [38]. We
have developed a protocol [39] that ensures that honest
nodes’ coordinates accurately reflect their locations by
using a group of landmark nodes, some of which are
permitted to be faulty. Another approach is described
in [34]. These techniques do not provide any guarantees
about the accuracy of a Byzantine node’s coordinates, and
we do not assume any such guarantees.

3 Platform Architecture
Our system moves through a sequence of epochs, num-
bered sequentially. Each epoch has a particular mem-
bership view. One of the members acts as the leader.
Nodes inform the leader of membership events (nodes
joining or leaving) and the leader collects this informa-
tion for the duration of the epoch. The epoch length is
a parameter whose setting depends on application needs
and assumptions about the environment; for example, our
experiments use 30s epochs. Users may opt to place the
leader on a fixed node, or select a new leader each epoch
based on the system membership and epoch number.

At the end of an epoch, the leader creates an item con-
taining the membership changes and next epoch number,
and multicasts this information as described in Section 4.
The item can also include data provided by the applica-
tion. The leader makes an upcall to the application code
at its node to obtain this data and includes it in the item.



In addition, the system can perform additional multicasts
within an epoch to propagate application data if desired.

When a node receives an item, it updates its view of
the membership to reflect the latest joins and departures,
then enters the next epoch. It can only process the item
if it knows the system state of the previous epoch; nodes
keep a few recent items in a log to enable nodes that are
slightly behind to obtain missing information.

Our system ensures consistency: all nodes in the same
epoch have identical views of the membership. The mul-
ticast mechanism delivers items quickly and reliably, so
that nodes are likely to be in the same epoch at the same
time. Messages include the epoch number at the point
they were sent, to ensure they are routed and processed
with respect to the correct membership view. Applications
that require consistency also include the current epoch
number in application messages, only processing mes-
sages when the sender and receiver agree on the epoch.

In this section, we describe how the system is organized.
We begin in Section 3.1 with a simplified version with
only a simple region. In Section 3.2, we introduce the
multi-region structure, which improves scalability even
though all nodes still know the membership of the entire
system. Finally, in Section 3.3, we describe an optional
extension to the system for extremely large or dynamic
environments, where each node has full membership in-
formation only for its own region.

3.1 Single-Region Deployment
In a one-region system, all membership events are pro-
cessed directly by the leader. The leader gathers notifica-
tions of node joins and departures throughout the epoch,
then aggregates them into an item and multicasts the item
to the rest of the system, starting the next epoch.

To join the system, a node sends a message identifying
itself to the leader, providing its network coordinates and
identity certificate (if tolerating Byzantine faults). The
leader verifies the certificate, adds the node to a list of new
joiners, and informs the new node of the epoch number
and a few current members. The new node obtains the
current membership from one of these nodes, reducing
the load on the leader.

To remove a node, a departure request is sent to the
leader identifying the node to be removed. A node can
leave the system gracefully by requesting its own removal
(in a Byzantine environment, this request must be signed).
Nodes that do not fail gracefully are reported by other
nodes; Section 5 describes this process. If the request is
valid, the leader adds the node to a list of departers.

Nodes include their coordinates in the join request, en-
suring that all nodes see a consistent view of each other’s
coordinates. Node locations can change over time, how-
ever, and coordinates should continue to reflect network
proximity. Each node monitors its coordinates and reports

changes, which are propagated in the next item. To avoid
instability, nodes report only major location changes, us-
ing a threshold.

3.2 Multi-Region Deployment
Even at relatively high churn, with low available band-
width and CPU resources, our analysis indicates that the
single-region structure scales to beyond 10,000 nodes.
As the system grows, however, the request load on the
leader, and the overhead in computing distribution trees,
increases. To accommodate larger systems, we provide a
structure in which the membership is divided into regions
based on proximity. Each region has a region ID and ev-
ery node belongs to exactly one region. Even in relatively
small systems, the multi-region structure is useful to re-
duce load on the leader, and to provide the application
with locality-based regions.

In a multi-region system each region has its own local
leader, which can change each epoch. This region leader
collects joins and departures for nodes in its region. To-
wards the end of the epoch, it sends a report listing these
membership events to the global leader, and the leader
propagates this information in the next item. Any mem-
bership events that are received too late to be included in
the report are forwarded to the next epoch’s leader.

Even though all nodes still know the entire system
membership, this architecture is more scalable. It offloads
work from the global leader in two ways. First, the leader
processes fewer messages, since it only handles aggregate
information about joins and departures. Second, it can
offload some cryptographic verification tasks, such as
checking a joining node’s certificate, to the region leaders.
Moreover, using regions also reduces the CPU costs of
our multicast algorithm, as Section 4 describes: nodes
need not compute full distribution trees for other regions.

To join the system, a node contacts any member of the
system (discovered out-of-band) and sends its coordinates.
The member redirects the joining node to the leader of the
region whose centroid is closest to the joining node. When
a node’s location changes, it may find that a different
region is a better fit for it. When this happens, the node
uses a move request to inform the new region’s leader that
it is leaving another region. This request is sent to the
global leader and propagated in the next item.

3.2.1 Region Dynamics: Splitting and Merging

Initially, the system has only one region. New regions
are formed by splitting existing regions when they grow
too large. Similarly, regions that grow too small can be
removed by merging them into other regions.

The global leader tracks the sizes of regions and when
one of them exceeds a split threshold, it tells that region
to split by including a split request in the next item. This
request identifies the region that should split, and provides



the ID to used be for the newly formed region. When a
region’s size falls below a merge threshold, the leader
selects a neighboring region for it to merge into, and
inserts a merge request containing the two region IDs
in the next item. The merge threshold is substantially
smaller than the split threshold, to avoid oscillation.

Whenever a node processes an item containing a split
or merge request, it carries out the split or merge compu-
tation. For a split, it computes the centroid and the widest
axis, then splits the region into two parts. The part to the
north or west retains the region ID, and the other part is
assigned the new ID. For a merge, nodes from one region
are added to the membership of the second region. As
soon as this item is received, nodes consider themselves
members of their new region.

3.3 Partial Knowledge
Even with the multi-region structure, scalability is ulti-
mately limited by the need for every membership event
in an epoch to be broadcast in the next item. The band-
width costs of doing so are proportional to the number
of nodes and the churn rate. For most systems, this cost
is reasonable; our analysis in Section 6.1 shows, for ex-
ample, that for systems with 100,000 nodes, even with
a very short average node lifetime (30 minutes), average
bandwidth overhead remains under 5 KB/s. However, for
extremely large, dynamic, and/or bandwidth-constrained
environments, the updates may grow too large.

For such systems, we provide a partial knowledge de-
ployment option. Here, nodes have complete knowledge
of the members of their own region, but know only sum-
mary information about other regions. We still provide
consistency, however: in a particular epoch, every node in
a region has the same view of the region, and every node
in the system has the same view of all region summaries.

In this system, region leaders send the global leader
only a summary of the membership changes in the last
epoch, rather than the full report of all joins and depar-
tures. The summary identifies the region leader for the
next epoch, provides the size and centroid of the region,
and identifies some region members that act as its global
representatives. The global leader includes this message
in the next item, propagating it to all nodes in the system.

As we will discuss in Section 4, the representatives are
used to build distribution trees. In addition, the represen-
tatives take care of propagating the full report, containing
the joins and leaves, to nodes in their region; this way
nodes in the region can compute the region membership.
The region leader sends the report to the representatives at
the same time it sends the summary to the global leader.

3.3.1 Splitting and Merging with Partial Knowledge

Splits and merges are operations involving the member-
ship of multiple regions, so they are more complex in a

partial knowledge deployment where nodes do not know
the membership of other regions. We extend the proto-
cols to transfer the necessary membership information
between the regions involved.

When a region s is merged into neighboring region t,
members of both regions need to learn the membership
of the other. The representatives of s and t communicate
to exchange this information, then propagate it on the
tree for their region. The leader for t sends the global
leader a summary for the combined region, and nodes in s
consider themselves members of t as soon as they receive
the item containing this summary.

A split cannot take place immediately because nodes
outside the region need to know the summary information
(centroid, representatives, etc.) for the newly-formed
regions and cannot compute it themselves. When the
region’s leader receives a split request, it processes joins
and leaves normally for the remainder of the epoch. At
the end of the epoch, it carries out the split computation,
and produces two summaries, one for each new region.
These summaries are distributed in the next item, and the
split takes effect in the next epoch.

4 Multicast
This section describes our multicast mechanism, which
is used to disseminate membership updates and applica-
tion data. The goals of the design are ensuring reliable
delivery despite node failures and minimizing bandwidth
overhead. Achieving low latency and a fair distribution
of forwarding load are also design considerations.

Census’s multicast mechanism uses multiple distribu-
tion trees, like many other multicast systems. However,
our trees are constructed in a different way, taking advan-
tage of the fact that membership information is available
at all nodes. Trees are constructed on-the-fly using a de-
terministic algorithm on the system membership: as soon
as a node receives the membership information for an
epoch from one of its parents, it can construct the distri-
bution tree, and thereby determine which nodes are its
children. Because the algorithm is deterministic, each
node computes exactly the same trees.

This use of global membership state stands in contrast
to most multicast systems, which instead try to minimize
the amount of state kept by each node. Having global
membership information allows us to run what is essen-
tially a centralized tree construction algorithm at each
node, rather than a more complex distributed algorithm.

Our trees are constructed anew each epoch, ignoring
their structure from the previous epoch. This may seem
surprising, in light of the conventional wisdom that “sta-
bility of the routing trees is very important to achieve
workable, reliable routing” [2]. However, this statement
applies to multicast protocols that require executing costly
protocols to change the tree structure, and may experi-
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Figure 1: Distribution trees for a 3-color deployment. All
nodes are members of each tree, but an internal node in
only one. For example, the red nodes r1–r3 are interior
nodes in the red tree, and leaves in the other two.

ence oscillatory or transitory behavior during significant
adjustments. Our approach allows the trees to be recom-
puted with no costs other than those of maintaining the
membership information. Changing the trees can also
improve fault-tolerance and load distribution because dif-
ferent nodes are located at or near the root of the tree [24].

4.1 Multiple-Tree Overlay
A multicast overlay consisting of a single tree is insuffi-
cient to ensure reliability and fair load distribution: the
small group of interior nodes bears all the forwarding load
while the leaves bear none, and an interior node failure
leads to loss of data at all its descendants. Instead, Cen-
sus uses multiple trees, as in SplitStream [7], to spread
forwarding load more evenly and enhance reliability.

Our overlay consists of a set of trees, typically between
4 and 16. The trees are interior-node-disjoint: each node
is an interior node in at most one tree. We refer to each
tree by a color, with each node in the system also assigned
a color. The interior of the red tree is composed com-
pletely of red nodes, ensuring our disjointness constraint.
The nodes of other colors form the leaves of the red tree,
and the red nodes are leaf nodes in all other trees. Using
an even distribution of node colors and a fan-out equal to
the number of trees provides load-balancing: each node
forwards only as many messages as it receives. Figure 1
illustrates the distribution trees in a 3-color system.

The membership update in each item must be sent in
full along each tree, since it is used to construct the trees.
The application data in an item, however, is split into
a number of erasure-coded fragments, each of which is
forwarded across a different tree. This provides redun-
dancy while imposing minimal bandwidth overhead on
the system. With n trees, we use m of n erasure coding,
so that all nodes are able to reconstruct the original data
even with failures in n − m of the trees. This leads to
a bandwidth overhead for application data of close to
n/m, with overhead of n for the replicated membership

update. However, as Section 4.4 describes, we are able
to eliminate nearly all of this overhead under normal cir-
cumstances by suppressing redundant information.

We employ a simple reconstruction optimization that
provides a substantial improvement in reliability. If a node
does not receive the fragment it is supposed to forward,
it can regenerate and forward the fragment once it has
received m other fragments. This localizes a failure in a
given tree to nodes where an ancestor in the current tree
failed, and where each parent along the path to the root
has experienced a failure in at least n−m trees.

In the case of more than n −m failures, a node may
request missing fragments from nodes chosen randomly
from its membership view. Section 6.2.1 shows such
requests are unnecessary with up to 20% failed nodes.

4.2 Building Trees within a Region
In this section, we describe the algorithm Census uses
to build trees. The algorithm must be a deterministic
function of the system membership. We use a relatively
straightforward algorithm that our experiments show is
both computationally efficient and effective at offering
low-latency paths, but more sophisticated algorithms are
possible at the cost of additional complexity. We first
describe how the tree is built in a one-region system;
Section 4.3 extends this to multiple regions.

The first step is to color each node, i.e. assign it to a
tree. This is accomplished by sorting nodes in the region
by their ID, then coloring them round-robin, giving an
even distribution of colors. Each node then computes all
trees, but sends data only on its own tree.

The algorithm uses a hierarchical decomposition of the
network coordinate space to exploit node locality. We
describe how we build the red tree; other trees are built
similarly. The tree is built by recursively subdividing
the coordinate space into F sub-regions (where F is the
fan-out, typically equal to the number of trees). This is
performed by repeatedly splitting sub-regions through the
centroid, across their widest axis. One red node from
each sub-region is chosen to be a child of the root, and
the process continues within each sub-region for the sub-
tree rooted at each child, fewer than F red nodes remain
in each sub-region. Figure 2 illustrates the hierarchical
decomposition of regions into trees for a fan-out of 4.

Once all red nodes are in the tree, we add the nodes of
other colors as leaves. We iterate over the other-colored
nodes in ID order, adding them to the red node with free
capacity that minimizes the distance to the root via that
parent. Our implementation allows nodes to have a fan-
out of up to 2F when joining leaf nodes to the internal
trees, allowing us to better place nodes that are in a sub-
region where there is a concentration of a particular color.

As mentioned in Section 2, we use coordinates consist-
ing of two dimensions plus a height vector [11]. Height is



Figure 2: Hierarchical subdivision used to build interior
tree with fan-out 4. Each region with more than 4 mem-
bers is recursively split into smaller sub-regions.

ignored when splitting regions, since it does not reflect the
geographic locality of nodes. However, it is used when
computing the distance between two nodes, such as when
picking the root of a sub-region.

4.3 Building Multi-Region Trees
In the multi-region system, we build an inter-region tree
of each color. The nodes in the inter-region tree then serve
as roots of the intra-region trees of that color.

The inter-region tree of a particular color is composed
of one representative of that color from each region. The
representatives are computed by the leader in a global
knowledge system, and specified in the summaries in a
partial knowledge system. The representatives can be
thought of as forming their own “super” region, and we
build the tree for that region using recursive subdivision
as within a region. The only difference is that we use
a smaller fan-out parameter for the inter-region tree, be-
cause each node in that tree also acts as a root for a tree
within its region, and therefore has descendants in that
region as well as descendants in the inter-region tree.

As mentioned in Section 3.3, representatives in the
partial knowledge deployment are responsible for prop-
agating the full report that underlies the summary to the
members of the region. The extra information is added to
the item by the root node of each tree for the region, and
thus reaches all the nodes in the region.

4.4 Reducing Bandwidth Consumption
Using erasure coded fragments allows Census to provide
high reliability with reasonably low overhead, but is not
without bandwidth overhead altogether. In a configuration
where 8 out of 16 fragments are required to reconstruct
multicast data, each node sends twice as many fragments

as strictly required in the non-failure case. Furthermore,
membership updates are transmitted in full on every tree,
giving even greater overhead.

We minimize bandwidth overhead by observing that
redundant fragments and updates are necessary only if
there is a failure. Instead of having each parent always
send both a membership update and fragment, we desig-
nate only one parent per child to send the update and m
parents per child to send the fragment. The other parents
instead send a short “ping” message to indicate to their
child that they have the update and fragment. A child who
fails to receive the update or sufficient fragments after a
timeout requests data from the parents who sent a ping.

This optimization has the potential to increase latency.
Latency increases when there are failures, because a node
must request additional fragments from its parents after a
timeout. Even without failures, a node must wait to hear
from the m parents that are designated to send a fragment,
rather than just the first m parents that it hears from.

Fortunately, we are able to exploit membership knowl-
edge to optimize latency. Each parent uses network coor-
dinates to estimate, for each child, the total latency for a
message to travel from the root of each tree to that child.
Then, it sends a fragment only if it is on one of the m
fastest paths to that child. The estimated latencies are also
used to set the timeouts for requesting missing fragments.
This optimization is possible because Census provides
a globally consistent view of network coordinates. Sec-
tion 6.2.3 shows that it eliminates nearly all redundant
bandwidth overhead without greatly increasing latency.

5 Fault Tolerance
In this section we discuss how node and network fail-
ures are handled. We consider both crash failures and
Byzantine failures, where nodes may behave arbitrarily.

5.1 Crash Failures
Census masks failures of the global leader using repli-
cation. A group of 2fGL + 1 nodes is designated as the
global leader group, with one member acting as the global
leader. Here, fGL is not the maximum number of faulty
nodes in the entire system, but rather the number of faulty
nodes in the particular leader group; thus the group is
relatively small. The members of the leader group use a
consensus protocol [25, 21] to agree on the contents of
each item: the leader forwards each item to the members
of the global leader group, and waits for fGL acknowl-
edgments before distributing it on the multicast trees. The
members of the global leader group monitor the leader
and select a new one if it appears to have failed.

Tolerating crashes or unexpected node departures is
relatively straightforward. Each parent monitors the live-
ness of its children. If the parent does not receive an ac-
knowledgment after several attempts to forward an item,
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it reports the absence of the child to the region leader. The
child will be removed from the system in the subsequent
membership update; if it was only temporarily partitioned
from the network, it can rejoin the region. In each epoch,
the parent of a particular color is designated as monitor, to
prevent multiple parents from reporting the same failure.

Region leaders are not replicated in the global knowl-
edge system; a new region leader is chosen in each epoch,
so a failed leader only causes updates to be delayed until
it is replaced. In the partial knowledge system, how-
ever, we must also ensure that if a region leader sends a
summary to the global leader, the corresponding report
survives, even if the region leader fails; otherwise, the
system would be in an inconsistent state. Census uses
a region leader group of 2fRL + 1 nodes to solve this
problem. The region leader sends the report to members
of its leader group and waits for fRL acknowledgments
before sending the summary to the global leader. Thus, if
the representatives receive an item containing a summary
for their region, they are guaranteed to be able to retrieve
the corresponding report from the leader group, even if
the region leader failed, provided that no more than fRL

members of the leader group have failed.
Census can select leader groups at random from the

system membership, using a deterministic function of the
epoch number and region membership. If this approach
is used, each summary in the partial knowledge system
announces the region’s next leader group, and the global
leader group is chosen deterministically from the nodes
in the region leader groups.

The size of the leader groups (i.e. the values of fRL

and fGL) depends on the fraction of nodes expected to
be failed concurrently, since faulty nodes are removed
from the system. Figure 3 shows the expected number
of leader groups that can be chosen before choosing a
bad group. Because Census detects and removes crashed
nodes within a couple of epochs, we can expect the frac-
tion of failed nodes to remain small (e.g. under 1%), and

therefore a small value for f will be sufficient even in a
very long lived system.

Many applications have some infrastructure nodes that
are expected to be very reliable. If so, using these as
replicas in leader groups, especially for the global leader,
can provide even better reliability. Using infrastructure
nodes is particularly well-suited for applications that send
multicast data, since they may benefit from having the
global leader co-located with the source of multicast data.

5.2 Byzantine Failures
Our solution for Byzantine fault tolerance builds on the
approaches used for crash failures, with the obvious ex-
tensions. For example, we require signed reports from
fM + 1 parents monitoring a failed node to remove it. If
this exceeds the number of trees, the node’s predecessors
in the region ID space provide additional reports.

We use region leader groups in both the global knowl-
edge and partial knowledge deployments. Since bad
nodes may misbehave in ways that cannot be proven, and
thus may not be removed from the system, all architec-
tures such as ours must assume the fraction of Byzantine
nodes is small. Figure 3 shows that this requirement is
fairly constraining if we want the system to be long-lived.
For example, with f = 5, we must assume no more than
3% faulty nodes to achieve an expected system lifetime of
10 years (with 30-second epochs). Therefore, it would be
wise to choose leader groups from infrastructure nodes.

The size of a region leader group is still only 2fRL +
1, since the group does not run agreement. Instead, a
region leader obtains signatures from fRL+1 leader group
members, including itself, before sending a summary or
report to the global leader. These signatures certify that
the group members have seen the updates underlying the
report or summary. If the leader is faulty, it may not send
the report or summary, but this absence will be rectified
in subsequent epochs when a different leader is chosen.

To ensure that a faulty region leader cannot increase the
probability that a region leader group contains more than
fRL faulty nodes, we choose leader group members based
on their IDs, using a common technique from peer-to-peer
systems [18, 36]: the first 2fRL+1 nodes with IDs greater
than the hash of the epoch number (wrapping around if
necessary) make up the leader group. A Byzantine region
leader cannot invent fictitious joins or departures, because
these are signed, and therefore it has no way to control
node IDs. It might selectively process join and departure
requests in an attempt to control the membership of the
next leader group, but this technique is ineffective.

We increase the size of the global leader group to
3fGL + 1 nodes. The global group runs a Byzantine
agreement protocol [9] once per epoch to agree on which
summaries will be included in the next item. The next
item includes fGL + 1 signatures, ensuring that the pro-



tocol ran and the item is valid. The group members also
monitor the leader and carry out a view change if it fails.
We have developed a protocol that avoids running agree-
ment but requires 2fGL + 1 signatures, but omit it due
to lack of space. Because the failure of the global leader
group can stop the entire system, and the tolerated failure
level is lower, it is especially important to use trusted
infrastructure nodes or other nodes known to be reliable.

5.2.1 Ganging-Up and Duplicates

Two new issues arise because of Census’s multi-region
structure. The first is a ganging-up attack, where a dispro-
portionate number of Byzantine nodes is concentrated in
one region. If so, the fraction of bad nodes in the region
may be too high to ensure that region reports are accurate
for any reasonable value of fRL. This may occur if an
attacker controls many nodes in a particular location, or
if Byzantine nodes manipulate their network coordinates
to join the region of their choice.

The second problem is that bad nodes might join many
regions simultaneously, allowing a small fraction of bad
nodes to amplify their population. Such duplicates are a
problem only in the partial knowledge deployment, where
nodes do not know the membership of other regions.

To handle these problems, we exploit the fact that faulty
nodes cannot control their node ID. Instead of selecting
a region’s leader group from the region’s membership,
we select it from a subset of the global membership: we
identify a portion of the ID space, and choose leaders
from nodes with IDs in this partition. IDs are not under
the control of the attacker, so it is safe to assume only a
small fraction of nodes in this partition are corrupt, and
thus at most fRL failures will occur in a leader group.

Nodes in the leader partition are globally known, even
in the partial knowledge system: when a node with an ID
in the leader partition joins the system, it is reported to
the global leader and announced globally in the next item.
These nodes are members of their own region (based on
their location), but may also be assigned to the leader
group for a different region, and thus need to track that
region membership state as well. Nodes in the leader par-
tition are assigned to the leader groups of regions, using
consistent hashing, in the same way values are assigned
to nodes in distributed hash tables [36]. This keeps assign-
ments relatively stable, minimizing the number of state
transfers. When the leader group changes, new members
need to fetch matching state from fRL + 1 old members.

To detect duplicates in the partial knowledge system,
we partition the ID space, and assign each partition to a
region, again using consistent hashing. Each region tracks
the membership of its assigned partition of the ID space.
Every epoch, every region leader reports new joins and de-
partures to the regions responsible for the monitoring the
appropriate part of the ID space. These communications

must contain fRL + 1 signatures to prevent bad nodes
from erroneously flagging others as duplicates. The leader
of the monitoring region reports possible duplicates to
the regions that contain them; they confirm that the node
exists in both regions, then remove and blacklist the node.

5.3 Widespread Failures and Partitions
Since regions are based on proximity, a network partition
or power failure may affect a substantial fraction of nodes
within a particular region. Short disruptions are already
handled by our protocol. When a node recovers and
starts receiving items again, it will know from the epoch
numbers that it missed some items, and can recover by
requesting the items in question from other nodes.

Nodes can survive longer partitions by joining a differ-
ent region. All nodes know the epoch duration, so they
can use their local clock to estimate whether they have
gone too many epochs without receiving an item. The
global leader can eliminate an entire unresponsive region
if it receives no summary or report for many epochs.

6 Evaluation
This section evaluates the performance of our system.
We implemented a prototype of Census and deployed it
on PlanetLab to evaluate its behavior under real-world
conditions. Because PlanetLab is much smaller than the
large-scale environments our system was designed for, we
also examine the reliability, latency, and bandwidth over-
head of Census using simulation and theoretical analysis.

6.1 Analytic Results
Figure 4 presents a theoretical analysis of bandwidth over-
head per node for a multi-region system supporting both
fail-stop and Byzantine failures. The analysis used 8 trees
and an epoch interval of 30 seconds. Our figures take
all protocol messages into consideration, including UDP
overhead, though Figure 4(c) does not include support for
preventing ganging-up or for duplicate detection.

Bandwidth utilization in Census is a function of both
system membership and churn. These results represent
a median node lifetime of 30 minutes, considered a high
level of churn with respect to measurement studies of
the Gnutella peer-to-peer network [33]. This serves as
a “worst-case” figure; in practice, we expect most Cen-
sus deployments (e.g. those in data center environments)
would see far lower churn.

The results show that overhead is low for all config-
urations except when operating with global knowledge
on very large system sizes (note the logarithmic axes).
Here the global leader needs to process all membership
updates, as well as forward these updates to all 8 distri-
bution trees. The other nodes in the system have lower
overhead because they forward updates on only one tree.
The overhead at the global leader is an order of magni-
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Figure 4: Mean bandwidth overhead with high churn. 30 minute session lengths, 30 second epochs, 8 trees and f = 3.

tude lower in the partial knowledge case, where it only
receives and distributes the compact region summaries.

In the partial knowledge cases (Figures 4(b) and 4(c))
the region leader incurs more overhead than the regular
nodes, primarily due to forwarding each report to the
leader group and representatives before sending a sum-
mary to the global leader. Supporting Byzantine fault
tolerance imposes little additional overhead for the region
leaders and global leader, because the cost of the addi-
tional signatures and agreement messages are dominated
by the costs of forwarding summaries and reports.

These results are sensitive to region size, particularly
in large deployments, as this affects the trade-off between
load on the region leaders and on the global leader. For
the purpose of our analysis we set the number of regions
to 3
√

nodes, mimicking the proportions of a large-scale
deployment of 100 regions each containing 10,000 nodes.

6.2 Simulation Results
We used a discrete-event simulator written for this project
to evaluate reliability, latency, and the effectiveness of
our selective fragment transmission optimization. The
simulator models propagation delay between hosts, but
does not model queuing delay or network loss; loss due
to bad links is represented by overlay node failures.

Two topologies were used in our simulations: the
King topology, and a random synthetic network topol-
ogy. The King topology is derived from the latency ma-
trix of 1740 Internet DNS servers used in the evaluation
of Vivaldi [11], collected using the King method [15].
This topology represents a typical distribution of nodes in
the Internet, including geographical clustering. We also
generate a number of synthetic topologies, with nodes
uniformly distributed within the coordinate space. These
random topologies allow us to examine the performance
of the algorithm when nodes are not tightly clustered
into regions, and to freely experiment with network sizes
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without affecting the distribution of nodes.
While our simulator measures network delays using

latencies, our algorithms operate solely in the coordinate
domain. We generated coordinates from the King data
using a centralized version of the Vivaldi algorithm [11].
Coordinates consist of two dimensions and a height vector,
as was found to effectively model latencies in Vivaldi.
These coordinates do not perfectly model actual network
delays, as discussed in Section 6.2.2.

6.2.1 Fault Tolerance

Figure 5 examines the reliability of our distribution trees
for disseminating membership updates and application
data under simulation. In each experiment we operate
with 10 regions of 1,000 nodes each; single-region deploy-
ments see equivalent results. The reliability is a function
only of the tree fan-out and our disjointness constraint,
and does not depend on network topology.

The leftmost four lines show the fraction of nodes that
are able to reconstruct application data under various era-
sure coding configurations. Census achieves very high



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6  7  8

C
u
m

u
la

ti
v
e
 F

ra
c
ti
o
n
 o

f 
N

o
d
e
s

Stretch

Single region (Synth)
10 regions (Synth)

Single region (King)
10 regions (King)

Figure 6: CDF of multicast transmission stretch in King
and 10,000 node synthetic topologies. 4/8 erasure coding.

success rates with up to 30% failed nodes in the 16-tree
configuration, with 2× redundancy (8/16 coding). This
high failure rate is unlikely, since our membership man-
agement protocol removes failed nodes promptly. The
primary factor influencing reliability is the redundancy
rate. Increasing the number of trees also improves reli-
ability, even with the same level of redundancy: using
16 trees instead of 4 tolerates nearly 10% more failures.
Additional trees improve reliability by reducing the prob-
ability of n−m parents failing, but comes with the cost
of more messages and more representatives to maintain.

The rightmost two lines show the fraction of nodes that
receive membership update information, which is sent in
full on each tree. In a 16-tree deployment, we find that
every non-faulty node receives membership information
on at least one tree, even if as many as 70% of the region
members have failed. Even on a 4-tree deployment, all
nodes receive membership information in the presence of
upwards of 20% failed nodes.

The high reliability exhibited in Figure 5 is partially
due to our reconstruction optimization, discussed in Sec-
tion 4.1. An 8/16 deployment using reconstruction allows
all non-faulty nodes to receive application data with as
many as 22% failed nodes, but tolerates only 7.5% fail-
ures without reconstruction. Reconstruction mitigates the
effects of a failure by allowing a tree to heal below a faulty
node, using fragments from other trees.

6.2.2 Latency

Census’s multicast mechanism must not impose excessive
communication delay. We evaluate this delay in terms
of stretch, defined as the total time taken for a node to
receive enough fragments to reconstruct the data, divided
by the unicast latency between the server and the node.

Figure 6 shows stretch on both the King and synthetic
topologies, assuming no failures and using 8 trees; results
for 16 trees are similar. The figure shows that stretch

is close to 1 on the synthetic topology, indicating that
our tree-building mechanism produces highly efficient
trees. Stretch is still low on the King topology, at an
average of 2, but higher than in the synthetic topology.
This reflects the fact that the coordinates generated for
the King topology are not perfect predictors of network
latency, while the network coordinates in the synthetic
topology are assumed perfect. The small fraction of nodes
with stretch below 1 are instances where node latencies
violate the triangle inequality, and the multicast overlay
achieves lower latency than unicast transmission.

Stretch is slightly higher in the multi-region deploy-
ment with the synthetic topology because the inter-region
tree must be constructed only of representatives. In the
synthetic topology, which has no geographic locality,
stretch increases because the representatives may not be
optimally placed within each region. However, this ef-
fect is negligible using the King topology, because nodes
within a region are clustered together and therefore the
choice of representatives has little effect on latency.

Our stretch compares favorably with existing multicast
systems, such as SplitStream [7], which also has a stretch
of approximately 2. In all cases, transmission delay over-
head is very low compared to typical epoch times.

6.2.3 Selective Fragment Transmission

Figure 7(a) illustrates the bandwidth savings of our opti-
mization to avoid sending redundant fragments (described
in Section 4.4), using 2× redundancy and 8 trees on the
King topology. In the figure, bandwidth is measured rel-
ative to the baseline approach of sending all fragments.
We see a 50% reduction in bandwidth with this optimiza-
tion; overhead increases slightly at higher failure rates, as
children request additional data after timeouts.

Figure 7(b) shows this optimization’s impact on latency.
It adds negligible additional stretch at low failure rates, be-
cause Census chooses which fragments to distribute based
on accurate predictions of tree latencies. At higher failure
rates, latency increases as clients are forced to request ad-
ditional fragments from other parents, introducing delays
throughout the distribution trees.

The figures indicate that the optimization is very ef-
fective in the expected deployments where the failure
rate is low. If the expected failure rate is higher, sending
one extra fragment reduces latency with little impact on
bandwidth utilization.

6.3 PlanetLab Experiments
We verify our results using an implementation of our
system, deployed on 614 nodes on PlanetLab. While this
does not approach the large system sizes for which our
protocol was designed, the experiment provides a proof
of concept for a real widespread deployment, and allows
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us to observe the system under realistic conditions such
as non-uniform node failures.

Our implementation supports multiple regions, with
dynamic splits and joins, but we found that a single region
was sufficient for the number of nodes in our PlanetLab
deployment, and more representative of region sizes that
would be seen in larger deployments. The implementation
currently supports fail-stop failures, moving the leader
each epoch, but does not tolerate Byzantine failures.

We configured the system to use 6 distribution trees,
with an epoch time of 30 seconds. In addition to mem-
bership information, we distributed a 1 KB application
message each epoch using 3-of-6 erasure coding, to test
the reliability and overhead of this part of our system.

We ran Census for 140 epochs of 30 seconds each.
As indicated in Figure 8(a), during the experiment, we
failed 10% of the nodes simultaneously, then restarted
them; we then did the same with 25% of the nodes. The
graph shows the number of nodes reported in our system’s
membership view. Census reacts quickly to the sudden
membership changes; the slight delay reflects the time
needed for parents to decide that their children are faulty.

Figure 8(b) shows the average total bandwidth usage
(both upstream and downstream) experienced by nodes in
our system. Each node uses about 0.1 KB/s at steady-state,
much of which is due to the size of the multicast data;
the shaded region of the graph represents the theoretical
minimum cost of disseminating a 1 KB message each
epoch. Bandwidth usage increases for a brief time after
our sudden membership changes, peaking at 0.9 KB/s
immediately after 25% of the nodes rejoin at once. Node
rejoins are more costly than node failures, because more
information needs to be announced globally for a newly-
joined node and the new node needs to obtain the system
membership. We have also run the system for much
longer periods, with similar steady-state bandwidth usage.

7 Applications
Knowledge of system membership is a powerful tool that
can simplify the design of many distributed systems. An
obvious application of Census is to support administration
of large multi-site data centers, where Byzantine failures
are rare (but do occur), and locality is captured by our
region abstraction. Census is also useful as an infrastruc-
ture for developing applications in such large distributed
systems. In this section, we describe a few representative
systems whose design can be simplified with Census.

7.1 One-Hop Distributed Hash Tables
A distributed hash table is a storage system that uses a
distributed algorithm, usually based on consistent hash-
ing [18], to map item keys to the nodes responsible for
their storage. This abstraction has proven useful for orga-
nizing systems at scales ranging from thousands of nodes
in data centers [12] to millions of nodes in peer-to-peer
networks [23]. The complexity in such systems lies pri-
marily in maintaining membership information to route
requests to the correct node, a straightforward task with
the full membership information that Census provides.

Most DHTs do not maintain full membership knowl-
edge at each host, so multiple (e.g. O(log N)) routing
steps are required to locate the node responsible for an
object. Full global knowledge allows a message to be
routed in one step. In larger systems that require partial
knowledge, messages can be routed in two steps. The
key now identifies both the responsible region and a node
within that region. A node first routes a message to any
member of the correct region, which then forwards it
to the responsible node, much like the two-hop routing
scheme of Gupta et al. [16]. Although our membership
management overhead does not scale asymptotically as
well as many DHT designs, our analysis in Section 6.1
shows that the costs are reasonable in most deployments.

From a fault-tolerance perspective, Census’s member-
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Figure 8: Results of a 614-node, 70-minute PlanetLab deployment with 10% and 25% correlated failures.

ship views provide several advantages. Single-hop rout-
ing eliminates the possibility of a malicious intermediate
node redirecting a request [35]. The fault-tolerance of our
protocol prevents Eclipse attacks, where malicious nodes
influence an honest node’s routing table [6]. Applica-
tions that use replication techniques to ensure consistency
across replicas benefit from Census’s consistent member-
ship views, since all nodes in the system agree on the
identity of the replicas for each epoch.

Finally, our use of full membership information can
enable more sophisticated placement algorithms than the
standard consistent hashing approach. Any deterministic
function of the membership view, including location in-
formation, suffices. For example, we might choose one
replica for a data item based on its key, and the others
based on location: either nearby nodes (for improved
performance) or distant ones (for failure-independence).

7.2 Application-Layer Multicast
Census allows applications to disseminate information
on multicast trees by piggybacking it on items. The ap-
plication can do this as needed: occasionally, on every
item, or more frequently. An example of where more
frequent multicast is needed is to broadcast video. For
high-bandwidth multicast like video streaming, the costs
of maintaining membership become less significant.

Compared to other scalable multicast systems, Cen-
sus’s multicast trees can provide higher reliability, using
optimizations like reconstruction and selective fragment
transmission, and can tolerate Byzantine behavior. The
availability of consistent membership views keeps the
multicast protocol relatively simple, while still providing
strong performance and reliability guarantees.

Census can also be used to construct a publish-
subscribe system where only certain nodes are interested
in receiving each message. One node is designated as
responsible for each interest group, and other nodes con-
tact it to publish or subscribe. When this node receives
a message to distribute, it constructs multicast trees over

just the subscribers, using them to disseminate both the
message and changes in subscriber membership. This
multicast is independent of the one we use to distribute
membership information, but the trees can be constructed
using the same algorithm.

7.3 Cooperative Caching
We are currently developing a wide-scale storage appli-
cation where a small set of nodes act as servers, storing
the definitive copy of system data. The other nodes in
the system are clients. To perform operations, they fetch
pages of data from the server into local caches and exe-
cute operations locally; they write back modified pages
to the server when the computation is finished.

To reduce load on the storage servers, clients share
their caches, fetching missing pages from nearby clients.
A partial knowledge Census deployment makes it easy
for clients to identify other nearby clients. We are investi-
gating two approaches to finding pages. In one, nodes an-
nounce pages they are caching on the multicast tree within
a region, so each node in the region always knows which
pages are cached nearby. The other uses an approach
similar to peer-to-peer indexing systems (e.g. [10]): we
use consistent hashing [18] to designate for each page one
node per region that keeps track of which region members
have that page cached. Members register with this node
once they have fetched a page, and check with it when
they are looking for a page.

Cached information inevitably becomes stale, render-
ing it useless for computations that require consistency.
To keep caches up to date, storage servers in this system
use Census’s multicast service to distribute an invalida-
tion stream. This consists of periodic notices listing the
set of recently modified pages; when a node receives such
a notice, it discards the invalid pages from its cache.

8 Related Work
There is a long history of research in group communica-
tion systems, which provide a multicast abstraction along



with a membership management service [14, 37, 19, 2,
26, 29]. Many of these systems provide support for group
communication while maintaining virtual synchrony [3], a
model similar to our use of epochs to establish consistent
views of system information. Such systems are typically
not designed to scale to large system populations, and
often require dedicated membership servers, which do not
fit well with our decentralized model.

Spread [2] and ISIS [4] use an abstraction of many
lightweight membership groups mapping onto a smaller
set of core groups, allowing the system to scale to large
numbers of multicast groups, but not large membership
sizes. We take a different approach in using regions to
group physical nodes, and scale to large system mem-
berships, without providing a multiple-group abstraction.
Quicksilver [26] aims to scale in both the number of
groups and the number of nodes, but does not exploit our
physical hierarchy to minimize latency and communica-
tion overhead in large system deployments.

Prior group communication systems have also aimed
to tolerate Byzantine faults, in protocols such as Ram-
part [30] and SecureRing [20]. Updating the membership
view in these systems requires executing a three-phase
commit protocol across all nodes, which is impractical
with more than a few nodes. By restricting our protocol
to require Byzantine agreement across a small subset of
nodes, we achieve greater scalability. Rodrigues proposed
a membership service using similar techniques [31], but it
does not provide locality-based regions or partial knowl-
edge, and assumes an existing multicast mechanism.

Many large-scale distributed systems employ ad-hoc
solutions to track dynamic membership. A common ap-
proach is to use a centralized server to maintain the list
of active nodes, as in Google’s Chubby lock service [5].
Such an approach requires all clients to communicate di-
rectly with a replicated server, which may be undesirable
from a scalability perspective. An alternative, decentral-
ized approach seen in Amazon’s Dynamo system [12]
is to track system membership using a gossip protocol.
This approach provides only eventual consistency, which
is inadequate for many applications, and can be slow to
converge. These systems also typically do not tolerate
Byzantine faults, as evidenced by a highly-publicized
outage of Amazon’s S3 service [1]

Distributed lookup services, such as Chord [36] and
Pastry [32], provide a scalable approach to distributed sys-
tems management, but none of these systems provides a
consistent view of membership. They are also vulnerable
to attacks in which Byzantine nodes cause requests to be
misdirected; solving this problem involves trading-off per-
formance for probabilistic guarantees of correctness [6].

Fireflies [17] provides each node with a view of system
membership, using gossip techniques that tolerate Byzan-
tine failures. However, it does not guarantee a consistent

global membership view, instead giving a probabilistic
agreement. Also, our location-aware distribution trees
offer faster message delivery and reaction to changes.

Our system’s multicast protocol for disseminating
membership updates builds on the multitude of recent
application-level multicast systems. Most (but not all) of
these systems organize the overlay as a tree to minimize
latency; the tree can be constructed either by a centralized
authority [28, 27] or by a distributed algorithm [8, 7, 22].
We use a different approach: relying on the availability
of global, consistent membership views, we run what is
essentially a centralized tree-building algorithm indepen-
dently at each node, producing identical, optimized trees
without a central authority.

SplitStream [7] distributes erasure-coded fragments
across multiple interior-node-disjoint multicast trees in or-
der to improve resilience and better distribute load among
the nodes. Our overlay has the same topology, but it is
constructed in a different manner. We also employ new
optimizations, such as selective fragment distribution and
fragment reconstruction, which provide higher levels of
reliability with lower bandwidth overhead.

9 Conclusions
Scalable Internet services are often built as distributed
systems that reconfigure themselves automatically as new
nodes become available and old nodes fail. Such sys-
tems must track their membership. Although many mem-
bership services exist, all current systems are either im-
practical at large scale, or provide weak semantics that
complicate application design.

Census is a membership management platform for
building distributed applications that provides both strong
semantics and scalability. It provides consistent mem-
bership views, following the virtual synchrony model,
simplifying the design of applications that use it. The
protocol scales to large system sizes by automatically
partitioning nodes into proximity-based regions, which
constrains the volume of membership information a node
needs to track. Using lightweight quorum protocols and
agreement across small groups of nodes, Census can main-
tain scalability while tolerating crash failures and a small
fraction of Byzantine-faulty nodes.

Census distributes membership updates and application
data using a unconventional multicast protocol that takes
advantage of the availability of membership data. The key
idea is that the distribution tree structure is determined
entirely by the system membership state, allowing nodes
to independently compute identical trees. This approach
allows the tree to be reconstructed without any overhead
other than that required for tracking membership. As our
experiments show, using network coordinates produces
trees that distribute data with low latency, and the multiple-
tree overlay structure provides reliable data dissemination



even in the presence of large correlated failures.
We deployed Census on PlanetLab and hope to make

the deployment available as a public service. We are cur-
rently using it as the platform for a large-scale storage
system we are designing, and expect that it will be simi-
larly useful for other reconfigurable distributed systems.
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