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Abstract
Many classic protocols in the fault tolerant distributed
computing literature assume a Crash-Fail model in
which processes either are up, or have crashed and
are permanently down. While this model is useful, it
does not fully capture the difficulties many real systems
must contend with. In particular, real-world systems
are long-lived and must have a recovery mechanism
so that crashed processes can rejoin the system and re-
store its fault-tolerance. When processes are assumed
to have access to stable storage that is persistent across
failures, the Crash-Recovery model is trivial. However,
because disk failures are common and because having
a disk on a protocol’s critical path is often performance
concern, diskless recovery protocols are needed. While
such protocols do exist in the state machine replication
literature, several well-known protocols have flawed
recovery mechanisms. We examine these errors to elu-
cidate the problem of diskless recovery and present our
own protocol for providing virtual stable storage, trans-
forming any protocol in the Crash-Recovery with stable
storage model into a protocol in the Diskless Crash-
Recovery model.

1 Introduction
Distributed algorithms are needed to build reliable ser-
vices out of unreliable processes. To effectively support
long-lived systems, these algorithms must be both ro-
bust to process and communication failures and able
to help processes recover from crashes. That is, algo-
rithms must provide provable guarantees in both the
Crash-Stop and Crash-Recovery models.

Prior algorithms generally assume a Crash-Recovery

model with stable storage, e.g., a disk attached to each
process whose contents are never lost. In practice, this
assumption does not always hold. Because writing data
synchronously to disk incurs a high performance cost,
many systems now eschew persistent disk writes in
favor of replicated in-memory storage. Furthermore,
disks can become corrupted or totally fail, and real-
world systems must cope with these challenges.

To address this need, we introduce a Diskless Crash-
Recovery model: processes lose their state on failures
but can use a recovery protocol to regenerate their state
upon recovery. We formally define this model and com-
pare it to traditional Crash-Stop and Crash-Recovery
models.

The central question this paper answers is: How and
when should an algorithm for Crash-Stop or Crash-
Recovery models be transformed into one for Diskless
Crash-Recovery? It is well known that a correct al-
gorithm for the asynchronous Crash-Stop model can
be converted to an algorithm for the Crash-Recovery
model simply by recording each state transition to sta-
ble storage. Is a similar transformation possible to a
Diskless Crash-Recovery model? Intuitively, we should
be able to construct a diskless algorithm by replacing
writes to stable storage with writes to a quorum of pro-
cesses so that data remains available upon recovery.

Several algorithms have attempted to provide ad-hoc
solutions to this problem in the context of specific pro-
tocols; none has been general purpose. In particular,
diskless recovery is of great interest for state machine
replication, which demands a reliable system that must
be both long-lived and tolerant of node and disk fail-
ures. To our knowledge, no current algorithm correctly
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handles recovery in the diskless model. We examine
three prior algorithms and demonstrate how they vio-
late the safety conditions of state machine replication
under certain failure conditions.

This paper introduces the first general purpose algo-
rithm for transforming Crash-Stop or Crash-Recovery
algorithms to the Diskless Crash-Recovery model. It
provides a virtual stable storage abstraction with the
same interface as a disk but constructed using dis-
tributed volatile storage. This algorithm provides dura-
bility (i.e., any data written to the virtual stable storage
is readable later) and liveness (i.e., reads and writes
eventually complete). We prove that our algorithm guar-
antees safety in the Diskless Crash-Recovery model in
all cases and guarantees termination given reasonable
assumptions about failure patterns.

The most closely related work to ours is Aguilera
et al.’s study of fault tolerance in an earlier Crash-
Recovery model without stable storage [1]. That work
concludes that consensus is solvable in their model only
when at least one process never crashes – an unrealistic
assumption for long-lived systems, as the authors them-
selves admit. Our work provides a solution even when
no process remains always up. The key differentiator is
that our work permits nodes to run a recovery protocol
after crashes rather than being forced to immediately
resume the normal-case protocol.

2 Models and Definitions
This section formally defines three models: the classic
Crash-Stop model, a Crash-Recovery model that uses
stable storage, and the Diskless Crash-Recovery model
without stable storage.

In each case, we consider a distributed system of a
fixed set of n processes, with IDs 1, . . . , n. Each process
is modeled as an I/O automaton [11] that takes input
or an internal action, produces output, and transitions
between states. A distributed execution happens in dis-
crete timesteps, during each of which, one (or more)
process(es) takes a step. Processes communicate with
each other by sending messages through a complete,
asynchronous network. This means that messages can
be lost, duplicated, or reordered arbitrarily – but not
modified – by the network. However, we assume the
network cannot duplicate or drop messages an infinite
number of times (i.e., the network is fair-lossy).

2.1 Crash-Stop Model
The Crash-Stop (CS) model assumes that processes can
fail by crashing and that crashes are permanent; a failed

node stops executing the algorithm forever and stops
communicating with other nodes. We say a process
is UP if it is executing protocol steps and performing
actions. If it crashes, it transitions to the DOWN state.
Once DOWN, a process no longer accepts messages that
are sent to it and forever remains in the DOWN state.

2.2 Crash-Recovery Model with Local
Stable Storage

In the Crash-Recovery model (CR), a process can re-
cover after crashing and resume executing the algo-
rithm. As in the CS model, a process in this model is
assumed to be either UP or DOWN, but it can also transi-
tion between the two states an infinite number of times.
A process that is DOWN can recover and transition back
to the UP state.

We want this model to capture the distinction be-
tween the volatile state of the system and stable storage.
As a result, the automaton does not recover in the same
state it was in before the crash. Rather, it can access sta-
ble storage that it must manage explicitly. We abstract
access to stable storage using an additional internal au-
tomaton action, WRITE(X), that persists X on stable
storage. If the action completes successfully, X will al-
ways be seen by the automaton irrespective of the num-
ber of crashes. If the process crashes while WRITE(X)
is pending, X may or may not be persisted.

When a process restarts in this model, it can recover
state by using another internal action, READ, that re-
turns the set of all values X that were persisted using
the WRITE(X) action in the past. Our choice of a set of
values as the interface to READ is somewhat arbitrary.
We could instead provide a log interface or a single
atomically-updated value; these options are equivalent
to one another, in that each can trivially be constructed
from the others.

2.3 Diskless Crash-Recovery:
Crash-Recovery without Local Stable
Storage

We focus on the Diskless Crash-Recovery (DCR)
model, where nodes have no access to stable storage.
As in the CR model, a process can recover after crash-
ing and resume execution. However, unlike CR, DCR
has no READ or WRITE actions.

Upon recovery, a process loses all state except its
unique process ID in t1,2, ...,nu. However, processes
can read from a local clock to get a number guaranteed
to be larger than any previous number read by any previ-
ous incarnation of that process. Importantly, this makes
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it possible to distinguish between different incarnations
of the same processes.1

A recovering process must bring itself to a state that
lets it resume its computation without violating any
guarantee of the algorithm. To do so, a process that re-
covers runs a distinct recovery protocol. This protocol
can communicate with other processes to recover pre-
vious state. Once the recovery protocol terminates, the
automaton changes its internal status to operational and
resumes execution of its normal protocol.

We describe a process that is UP as RECOVERING if
it is running its recovery protocol and OPERATIONAL

otherwise. This distinction makes it possible to state
failure bounds in terms of the number of operational
processes, e.g., that no more than half of the processes
can be either down or recovering at any moment. Our
definition matches the design of existing protocols (e.g.,
Viewstamped Replication [10]).

One important property that protocols in the DCR
model should satisfy is recovery termination, which
requires a recovering process to eventually complete
recovery and become OPERATIONAL, as long as it does
not crash again. We are thus not interested in trivial
solutions, i.e., those where recovering processes declare
themselves to be permanently DOWN and never again
participate in the normal protocol.

3 Model Transformations
Many algorithms solve problems in the CS failure
model. When can these algorithms be applied to solv-
ing the same problems in the CR or DCR models?

Crash-Stop to Crash-Recovery with Stable Storage.
Transforming CS protocols to the CR model is triv-
ial when local stable storage is available. This can be
done by recording every state transition to disk before
performing output actions. Equivalently, the automa-
ton can log every message and input action received to
stable storage and replay these in order on recovery.

Any asynchronous CS algorithm transformed in this
way provides the same guarantees in the CR model.
Because the automaton recovers in the same state it
was in before crashing, the only difference is that it
does not process any messages that it received while
it was down. Asynchronous algorithms are inherently
robust to these omission failures [3] because they can

1 The algorithm we present in Section 5 could be easily adapted
to work when processes can only generate a unique number instead
of a monotonically increasing one. We assume a monotonic clock
only for simplicity of exposition.

handle messages that the network drops or delays.

Towards Diskless Crash Recovery. This paper
poses the question, How can a protocol from the
Crash-Stop or Crash-Recovery model be correctly
transformed to one that works in the Diskless Crash-
Recovery model? Specifically, can we implement a vir-
tual stable storage abstraction in the DCR model that
provides the same READ/WRITE() interface defined
in CR? In the DCR model, a process can persist state
only by replicating on other processes in the system.
Hence, any READ/WRITE(X) action must communi-
cate with other processes in the system to provide the
same guarantees even in the presence of concurrent fail-
ures. We begin by defining the notion of virtual stable
storage:

Virtual Stable Storage. We say that an algorithm
correctly implements virtual stable storage in the DCR
model if it provides READ and WRITE(X) primitives
with the following properties:

• Persistence: A successful READ outputs the set of
all objects the process successfully persisted through
a prior invocation of WRITE(X).
• Termination: Every READ and WRITE(X) at a pro-

cess eventually succeeds unless the process crashes.

4 State Machine Replication in
Diskless Crash-Recovery

Providing stable storage in the DCR model seems su-
perficially straightforward – simply replace each write
to disk with a write to a majority of replicas. How-
ever, there are surprisingly subtle challenges; if handled
naı̈vely, delayed messages from prior incarnations of a
process can lead to the illusion that a write has been
persisted when, in fact, it could still be lost.

As evidence of its subtlety, several protocols have
attempted, and failed, to provide diskless crash recov-
ery in the context of a specific problem, state machine
replication. State machine replication (SMR) – a classic
problem that lies at the core of many critical deployed
distributed systems [2, 7, 9, 10, 13, 15] – highlights the
relevance of diskless recovery: SMR deployments are
long-lived and must be able to handle node crashes and
recoveries, including ones where stable storage is lost.

We analyze 3 state machine replication protocols for
the DCR model: Viewstamped Replication [10], Paxos
Made Live [2], and JPaxos [6]. In each case, we show
that these protocols do not completely recover the state
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of a failed node under certain scenarios, a situation that
can lead to user-visible violations of protocol correct-
ness. To our knowledge, no prior work has provided a
correct recovery protocol for this problem.

This section provides a detailed case study of cor-
rectness problems in Viewstamped Replication and an
overview of the equivalent problem in Paxos Made Live
and JPaxos. A more complete description, including
detailed traces of the failure in all three protocols, is
available in Appendix A.

4.1 Definitions
The SMR approach models a replicated service as a
state machine. Clients submit requests to the service,
which runs a consensus protocol (e.g., Multi-Paxos or
Viewstamped Replication) to establish a global order
of requests; the replicas then execute that request and
respond to the client. A correct SMR protocol provides
linearizability [4]: clients receive responses as though
their requests had been executed by a single system in
a serial order; if operation A receives a response before
B is invoked, A must precede B in that serial order.

SMR is well known to be equivalent to repeated in-
stances of consensus, or atomic broadcast. We choose
to frame the problem as SMR rather than consensus be-
cause the former implies a long-lived system consistent
with our DCR model. In particular, single-instance con-
sensus admits some solutions (such as requiring some
fraction of nodes to be up for the duration of the proto-
col [1]) that are not reasonable in the long-lived SMR
model.

4.2 Viewstamped Replication
Viewstamped Replication (VR) is a classic SMR algo-
rithm. The original presentation by Oki and Liskov in
1988 [13] used stable storage for certain parts of the
replica state. VR always guarantees sequence agree-
ment and integrity, and it guarantees liveness as long as
there is sufficient network synchrony and no more than
f out of 2 f ` 1 replicas are failed. A subsequent ver-
sion [10] revised the protocol to eliminate the need for
stable storage; we demonstrate that this version does
not correctly handle all loss-of-state failures.

VR is a leader-based algorithm: the system moves
through a series of numbered views, in which one node
is designated as the leader. VR uses 2 protocols. Dur-
ing normal case execution, the leader assigns sequence
numbers to incoming client requests, sends PREPARE

messages to replicas, and executes the operation once
it has received replies from a majority. When the leader

is suspected to have failed, a view change protocol re-
places the leader with a new one. Replicas increment
their view numbers, stop processing requests in the old
view, then send the new leader a VIEW-CHANGE mes-
sage with their log of operations. The new leader be-
gins processing only when it receives VIEW-CHANGE

messages from a majority of replicas, ensuring that it
knows about all operations successfully completed in
prior views. These two protocols are equivalent to the
two phases of Paxos.

View Change Invariant. In VR, an important invari-
ant is that each replica’s view number increases mono-
tonically: once a replica sends a VIEW-CHANGE mes-
sage for view v, it never returns to a lower view. This is
important for correctness because it implies that repli-
cas cannot commit to new operations in prior views
once they have sent a VIEW-CHANGE message to the
new leader. Without this invariant, a new leader cannot
be guaranteed to know about all operations completed
by previous leaders and would thus violate linearizabil-
ity.

Recovery in VR. Ensuring that nodes in VR can re-
cover from failures requires providing a recovery proce-
dure. This procedure must ensure that the view change
invariant continues to hold, i.e., that each replica recov-
ers in a view number at least as high as the view number
in any VIEW-CHANGE message it has ever sent.

The original version of VR [13] achieved this invari-
ant through stable storage. This protocol logged view
numbers to stable storage during view changes, but it
eschewed the use of stable storage in normal operations
because writing every operation to disk is slow. It used
a recovery protocol to recover all other state, including
the set of committed operations.

A later version, “VR Revisited” [10], claimed to pro-
vide a completely diskless mode of operation. It used a
recovery protocol and an extension to the view change
protocol to, in essence, replace each write to disk with
communication with a quorum of nodes. We show be-
low that this protocol is insufficient to ensure continued
correctness of the system.

VR Revisited’s recovery protocol is straightforward:
the recovering replica sends a RECOVERY message to
all other replicas.2 If not recovering or in the mid-
dle of a view change, every other node replies with
a RECOVERY-RESPONSE containing its view number;

2 This message contains a unique nonce to distinguish responses
from different recoveries if a node recovers more than once.
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the leader also includes its log of operations. Once the
recovering replica has received a quorum of responses
with the same view, including one from that view’s
leader, it updates its state with the information in the
log.

VR Revisited adds another phase to the view change
protocol. When nodes determine a view change is
necessary, they increment their view number, stop
processing requests in the old view, and send a
START-VIEW-CHANGE message to all other replicas.
Only when replicas receive START-VIEW-CHANGE

messages from a quorum of replicas do they send their
VIEW-CHANGE message to the new leader and proceed
as in the original protocol. The additional phase is in-
tended to serve as the equivalent of a disk write, ensur-
ing that replicas do not commit to a new view until a
majority of them becomes aware of the intended view
change. Together with the recovery protocol, the added
phase aims to prevent violation of the View Change In-
variant by ensuring that a crashed replica recovers in a
view at least as high as any VIEW-CHANGE message it
has sent.

By itself, however, this approach is not suffi-
cient. The problem of persistence has only shifted a
layer: rather than a node “forgetting” that it sent a
VIEW-CHANGE message on a crash, it can forget that
it sent a START-VIEW-CHANGE. That is, consider the
following case with three nodes:

� Node A initiates a view change by sending
START-VIEW-CHANGE v`1, but this message is de-
layed.

� A crashes and recovers; it receives
RECOVERY-RESPONSEs from B and C. Be-
cause they have not seen the START-VIEW-CHANGE

message, A recovers to view v.
� B receives A’s START-VIEW-CHANGE and sends

START-VIEW-CHANGE v` 1. Because it has a quo-
rum of these messages (from A and itself), it sends
VIEW-CHANGE v`1, but this message is delayed.

� B crashes, recovers, and receives
RECOVERY-RESPONSEs from nodes A and C
during recovery. These nodes are in view v and have
no knowledge of the view change, so B recovers to
view v.

B has now sent a VIEW-CHANGE message but has lost
all knowledge of that fact, violating the View Change
Invariant.

This leads to a violation of linearizability. B can
now accept a new operation o in view v by sending

PREPARE-OK messages to the leader (say it is A). This
operation can succeed without C learning of the oper-
ations, because A and B together form a quorum. If C
suspects that A has failed and initiates a view change,
it can proceed using only its own log and the delayed
VIEW-CHANGE message from B. Neither log contains
o, so this operation will not be visible to future clients.

Appendix A provides a complete trace of a lineariz-
ability violation in the VR Revisited protocol.

4.3 Other Protocols: Paxos Made Live and
JPaxos

Viewstamped Replication is not the only protocol that
attempts to provide diskless recovery for SMR. The
same type of correctness problem exists in two other
protocols, Paxos Made Live [2] and JPaxos [6], and
we briefly review their recovery approaches here; a full
description is in Appendix A.

Paxos Made Live [2] is Google’s implementation of
the Multi-Paxos protocol. To handle corrupted disks,
it lets a replica rejoin the system without its previous
state and runs an (unspecified) recovery protocol to re-
store the application state. The recovering replica must
then wait to observe a full instance of successful con-
sensus before participating. This step successfully pre-
vents the replica from accepting multiple values for the
same instance (e.g., one before and one after the crash).
However, it does not prevent the replica from sending
different promises (i.e., view change commitments) to
potential new leaders, which can lead to a new leader
deciding a new value for a prior successful instance of
consensus.

JPaxos [6], a hybrid of Multi-Paxos and VR, pro-
vides a variety of deployment options, including a disk-
less one. Nodes in JPaxos maintain an epoch vector that
tracks which nodes have crashed and recovered to dis-
card lost promises made by prior incarnations of recov-
ered nodes. However, like VR and PML, this approach
encounters the same problem at a different level: cer-
tain failures during node recovery can cause the system
to lose state and violate safety properties.

5 Providing Stable Storage in
Diskless Crash-Recovery

In this section we present a protocol that provides the
virtual stable storage abstraction in the Diskless Crash-
Recovery model along with its correctness proof. The
protocol implementation is shown in Algorithm 1.
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Algorithm 1 Single reader, single writer non-atomic set in Diskless Crash-Recovery

Permanent Local State:
n P N` Ź Number of processes
i P r1, . . . ,ns Ź Process number

Volatile Local State:
vÐ rK for i P r1, . . . ,nss Ź Crash vector
opÐ f alse Ź Operational flag
RÐ tu Ź Acquire reply set
wÐK Ź Value being written
SÐ tKu Ź Local set

1: upon SYSTEM-INITIALIZE

2: opÐ true
3: end upon

4: upon RECOVER

5: vris Ð READ-CLOCK

6: ACQUIRE-QUORUM(K)
7: opÐ true
8: end upon

9: procedure WRITE(val)
10: guard: op
11: ACQUIRE-QUORUM(val)
12: end procedure

13: function ACQUIRE-QUORUM(val)
14: wÐ val
15: RÐ tu

16: Add val to S
17: mÐ xACQUIRE, Sy
18: for all j P r1, . . . ,ns do
19: SEND-MESSAGE(m, j)
20: end for
21: Wait until |R| ą n{2
22: end function

23: procedure READ

24: guard: op
25: return S´tKu
26: end procedure

27: function SEND-MESSAGE(m, j)
28: m. f Ð i Ź Sender
29: m.vÐ v
30: Send m to process j
31: end function

32: function DISCARD-OLD-REPLIES

33: while Dm P R where
34: m.vrm. f s ă vrm. f s do
35: Remove m from R
36: SEND-MESSAGE(xACQUIRE, Sy, m. f )
37: end while
38: while Dm,m1 P R where
39: m. f “ m1. f ^m‰ m1 do
40: Remove m from R
41: end while
42: end function

43: upon receiving xACQUIREy, m
44: guard: op
45: vÐ v\m.v
46: SÐ SYm.S
47: m1Ð xACQUIRE-REP, Sy
48: SEND-MESSAGE(m1, m. f )
49: end upon

50: upon receiving xACQUIRE-REPy, m
51: guard: m.vris ě vris^w P m.S
52: vÐ v\m.v
53: SÐ SYm.S
54: Add m to R
55: DISCARD-OLD-REPLIES

56: end upon
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5.1 Overview

The protocol we propose implements a single reader,
single writer, fault-tolerant non-atomic set that provides
the READ/WRITE interface and virtual stable storage
properties presented in Section 3. Adapted from the def-
inition of regular registers [8], a non-atomic set offers
weaker guarantees than a linearizable one. It guarantees
that a READ returns a set containing all previously suc-
cessfully written values, but it makes no other guaran-
tees. Importantly, the process is allowed only to write
values to the set, never to remove them. We choose
these weaker guarantees for simplicity, so we can focus
on the main problem – how to correctly obtain diskless
persistence in the presence of crashes and recoveries.

Stronger properties can be implemented on top of
this basic interface. For instance, this protocol could
easily be adapted to provide a multi-reader, multi-writer
non-atomic set. However, to guarantee that a READ
returns all previously written values, a process would
have to read from a (simple, not necessarily consistent)
quorum instead of its local set. A multi-reader, multi-
writer set would be a powerful abstraction upon which
to readily build other data structures (e.g., the shared
log of a replicated state machine). Also, it is worth
noting that concurrent instances of this single reader,
single writer set can be run to give all processes access
to virtual stable storage.

While the virtual stable storage protocol is always
safe, the termination of WRITE and recovery are guar-
anteed only under certain assumptions. Section 5.3
specifies these assumptions and proves protocol cor-
rectness.

5.2 Protocol Description

We now describe the protocol, which is presented as
pseudo-code in Algorithm 1. We present the algorithm
using a modified I/O automaton notation. In our proto-
col, procedures are input actions that can be invoked
at any time (e.g., in a higher level protocol) by the set’s
owner, the designated reader/writer process for which
this instance of the protocol is providing virtual sta-
ble storage; functions are private methods; and upon
clauses specify how processes handle external events
(i.e., messages, the global startup event, and the transi-
tion from DOWN to RECOVERING).

We use guards to prevent actions from being acti-
vated under certain conditions. If the guard of a mes-
sage handler is not satisfied, the message is dropped,
and the action is not executed. If the guard of a pro-

cedure is not satisfied, that procedure is inactive and
fails upon invocation.

There is a set of n processes, Π, and every process
has a unique ID in t1,2, ...,nu. Each process maintains
a crash vector of length n, with one entry for each pro-
cess in system. Entry i in this vector (called i’s crash
ID) tracks the latest incarnation of process i. When a
process recovers, it gets a new value from its local,
monotonic clock and updates its crash ID in its own
vector. When the recovery procedure ends, the process
becomes OPERATIONAL and signals this through the
op flag. A process’s crash vector is updated whenever
a process learns about a newer incarnation of another
process. Crash vectors are partially ordered, and a join
operation, denoted \, is defined over vectors, where
pv1\ v2qris “maxpv1ris, v2risq.

The crash vector has two purposes: (1) to match re-
quests with their replies (e.g., to ignore old replies), and
(2) to detect whether a process has crashed and recov-
ered. Initially, each process’s crash vector is rK, . . . ,Ks,
where K is some value smaller than any value ever re-
turned by any clock, and thus smaller than the crash ID
of any process that has ever crashed and begun recov-
ery.

The single main function of our algorithm,
ACQUIRE-QUORUM, handles both writing values and
recovering. ACQUIRE-QUORUM ensures the persis-
tence of both the process’s current crash vector (in par-
ticular, the process’s own crash ID in the vector) as well
as the value to be written (K, a unique value which ev-
ery process’s local set contains, in the case of recovery).
Additionally, it updates the process’s local set to con-
tain all previously written values. This guarantees that
upon recovery, if the set owner calls READ, it will get
those values.

ACQUIRE-QUORUM provides these guarantees by
collecting replies from a quorum of processes and en-
suring that those replies are consistent per Section 5.3.
It uses crash vectors to detect when any process that
previously replied could have crashed and thus “forgot-
ten” about the written value and the process’s crash ID.
The DISCARD-OLD-REPLIES function detects and re-
moves these replies from the reply set and then resends
the original message. While recovering, processes do
not send replies for WRITEs or other processes’ recov-
eries; all ACQUIRE-REP messages are sent by OPERA-
TIONAL processes.
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5.3 Protocol Correctness
Prior to discussing the correctness of Algorithm 1, we
first define basic terms.

Definition 1. A quorum, Q, is a set of processes such
that:

Q PQ “ tQ | Q P 2Π and |Q| ą |Π|{2u

Note that @Q1,Q2 PQ, Q1XQ2 ‰H (Quorum In-
tersection).

Definition 2. We say that property X is stable if the
following two guarantees hold:

1. If a process, p, has property X , then as long as p
does not crash, p will still have property X .

2. If a process, p, has property X and p sends an AC-
QUIRE or ACQUIRE-REP message to p1, then upon
receiving the message, p1 will have property X .

Note that a process having a crash vector, v, that is
greater than or equal to some value is a stable property.
Also, a process having some element in its local set, S,
is a stable property.

Definition 3. If a process, p, has some stable property,
X , we say p knows X . If a message, m, from some
process, p, indicates that at the time p sent m, p knew
X , then we say m shows X (for p).

Definition 4. We say that a quorum Q knows some
stable property X if, for all processes p P Q, one of
the following holds: (1) p is DOWN, (2) p is OPERA-
TIONAL, and p knows X , or (3) p is RECOVERING and
is guaranteed to know X upon finishing recovery.

Definition 5. A set of ACQUIRE-REP messages, R, is
consistent if:

@s1,s2 P R : s1.vrs2. f s ď s2.vrs2. f s

Definition 6. We say that a consistent set of ACQUIRE-
REP messages constitutes a quorum promise showing
stable property X if the set of senders of those messages
is a quorum, and each message shows X .

The DISCARD-OLD-REPLIES function (line 32)
guarantees the consistency of the reply set by discard-
ing any inconsistent messages; it also guarantees that
there is at most one message from each process in
the reply set. Therefore, the termination of ACQUIRE-
QUORUM (line 13) means that the process has received

a quorum promise showing that val was written and
that every participant had a crash vector greater than or
equal to its own vector when it sent the ACQUIRE mes-
sages. This implies that whenever a process finishes
recovery and sets its op flag to true, it must have re-
ceived a quorum promise showing that the participants
in its recovery had that process’s latest crash ID in their
crash vectors.

Definition 7. We say that a process participates in
a quorum promise for X when it sends an ACQUIRE-
REP message that will eventually belong to a quorum
promise that some other process receives.

Unlike having a stable property, that a process par-
ticipated in a quorum promise holds across failures and
recoveries. That is, we say that a process, not a specific
incarnation of that process, participated in a quorum
promise. Also note that only OPERATIONAL processes
ever participate in a quorum promise, guaranteed by the
guard on the ACQUIRE message handler.

Theorem 1 (Persistence of Quorum Knowledge). If at
time t, some quorum, Q, knows stable property X, then
for all times t 1 ě t, Q knows X.

Proof. We prove by (strong) induction on t 1 that the
following invariant, I, holds for all t 1 ě t. For all p
in Q: (1) p is OPERATIONAL and knows X , (2) p is
RECOVERING, or (3) p is DOWN. In the base case at
time t, Q knows X by assumption, so I holds.

Now, assuming I holds at all times t 1´ 1 ě t, we
show that I holds at time t 1. Because X is stable, the
only step any process, p, in Q could take to falsify I
is finishing recovery. Either recovery began after time
t, or at or before time t. If the latter, then because Q
knew X , p is guaranteed to know X now that it has
finished recovering. If this recovery began after time t,
then p must have received some set of ACQUIRE-REP

messages from a quorum, all of which were sent after
time t. By quorum intersection, one of these messages
must have come from some process in Q. Call this pro-
cess q. Since q’s ACQUIRE-REP message, m, was sent
after time t and before t 1, by the induction hypothesis, q
must have known X when it sent m. Since X is a stable
property, p now knows X upon finishing recovery.

Since I holds for all times t 1 ě t, this implies the
theorem.

Theorem 2 (Acquisition of Quorum Knowledge). If
process p receives a quorum promise showing stable
property X from quorum Q, then Q knows X.
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Proof. We again prove this theorem by (strong) induc-
tion, showing that the following invariant, I, holds for
all times, t:

1. If p receives a quorum promise showing stable prop-
erty X from quorum Q, then Q knows X .

2. If p ever participated in a quorum promise for X at or
before time t, and p is OPERATIONAL, then p knows
X .

In the base case at t “ 0, I holds vacuously since
no process could have yet received or participated in a
quorum promise. Now, assuming I holds at time t´1ě
0, we will show that I holds at time t.

We prove our invariant in two parts. First, let’s dis-
patch with property 1 of I. If p has received a quorum
promise, R, from quorum Q showing X , then because R
is consistent, we know that at the time they participated
in R no process in Q had participated in the recovery3

of any later incarnation of any other process in Q than
the one that participated in R. If they had, then by the
induction hypothesis (which we can apply as their par-
ticipation happened before time t), we would know that
such a process would have known the recovered pro-
cess’s new crash ID in the crash vector when it partici-
pated in R, and R would not have been consistent.

Given that fact, we will use a secondary induction
to show that for all times, t 1, all of the processes in Q
either: (1) haven’t yet participated R, (2) are DOWN, (3)
are RECOVERING, or (4) are OPERATIONAL and know
X .

In the base case at t 1 “ 0, no process in Q has yet
participated in R. Now, for the inductive step, note that
the only step any process, q, could take that would fal-
sify our invariant is transitioning from RECOVERING to
OPERATIONAL after having participated in R. We know
that if q finished recovering, it must have received a
quorum promise showing that the senders knew its new
ID in the crash vector. By quorum intersection, at least
one of these came from some process in Q; call this pro-
cess r. We already know r couldn’t have participated
in q’s recovery before participating in R. So by the in-
duction hypothesis, r knew X at the time it participated
in q’s recovery. And since X is stable, q knows X , com-
pleting this secondary induction.

Finally, we know that since p has received R, at time
t all of the processes in Q have already participated in

3 That is, participated in the quorum promise needed by a re-
covering process, showing that the senders knew the recovering
process’s new ID (or a greater one) in the crash vector.

R, so all of the processes in Q are either DOWN, RECOV-
ERING (and guaranteed to know X upon recovery), or
are OPERATIONAL and know X . Therefore, Q knows X ,
and this completes the proof that property 1 of I holds
at time t.

Now, let’s deal with property 2 of I. Suppose, for
the sake of contradiction, that at or before time t, p
participated in quorum promise R showing X (i.e. sent
some message showing X that is, or will be, in a quo-
rum promise) received by q. Further suppose that p is
OPERATIONAL, and p doesn’t know X . Let Q be the
the set of participants in R (i.e. those processes which
already have or will at some point participate in the
quorum promise, R).

Since X is a stable property, p must have crashed
and recovered since participating in R. Consider p’s
most recent recovery, and let the quorum promise it
received showing that the senders knew p’s new crash
ID in the crash vector (or a greater one) be R1. Let the
set of participants in R1 be Q1. By quorum intersection,
there exists some process in QXQ1. Consider one such
process, r.

We know that r couldn’t have already participated
in R when it participated in R1; otherwise by induction,
when r participated in R1, it would have known X , so
our incarnation of p at time t would know X . There-
fore, r participated in R1 before participating in R. r
couldn’t have participated in R before time t, however;
otherwise, by property 2 of I, it would have known p’s
latest crash ID when participating in R, violating the
consistency of R.

However, we know that p has received a quorum
promise for its new crash ID at or before time t. So by
property 1 of I, which we have already shown holds at
time t, Q1 knows p’s new crash ID. And, by Theorem 1,
if Q1 knows p’s new crash ID at some time less than or
equal to t, then for all times greater than or equal to t,
Q1 knows p’s new crash ID. In particular, this means
that for all times greater than or equal to time t, if r
is up, it knows p’s new crash ID. Therefore, r can’t
participate in R at or after time t, contradicting the fact
that r participates in R and completing the proof that
property 2 holds at time t.

Finally, as stated above, if WRITE terminates at time
t, we know that the process received promise from a
quorum, Q, showing that val was written. So by Theo-
rem 2, we know this means Q knows val, and by The-
orem 1, we know that Q will continue to know val. If
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that process ever crashes after time t and subsequently
recovers, we know that upon finishing recovery, it must
know val since it must have received an ACQUIRE-
REPLY from some process in Q which knew val. There-
fore, once a WRITE terminates, any subsequent READ

will at least return the written value, showing the safety
property of virtual stable storage.

Termination It would be nice to guarantee the ter-
mination of WRITE and recovery in all circumstances.
However, this is clearly impossible. In the DCR model,
processes can experience “amnesia.” Consider some
process, p, trying to recover or write a value. If every
time any other process receives a message from p, it
replies, and then crashes and recovers (before any other
process receives a message from p), then it is obvi-
ously impossible for p to build up distributed knowl-
edge, much less a quorum promise.

Our single reader, single writer set protocol does,
however, guarantee termination of both WRITE and
recovery if there is some quorum of processes, all of
which remain OPERATIONAL for a sufficient period of
time (and the writing or recovering process itself does
not crash). This is easy to see since a writing or re-
covering process will eventually get an ACQUIRE-REP

from each of these OPERATIONAL processes, and those
replies must be consistent (since no process could have
a crash ID for another process in its vector higher than
the crash ID of the latest incarnation of that process).

Furthermore we note that even though our protocol
is always safe, if ever a majority of processes is DOWN

any given time, then no process can ever receive replies
from a quorum again, so no process will ever be able
to recover or write again.4

6 Related work
Early work on the Crash-Recovery failure model pro-
posed protocols to solve the consensus problem [3, 14].
These papers assume stable storage, and do not focus
on state-loss failures, either assuming that processes do
not lose state on crash [14] or that every state transi-
tion is persisted to stable storage [3]. (Others persist
only critical state to stable storage [5].) As a result, the
main focus of this work is omission failures, i.e., the
messages that processes do not receive while down.

Aguilera et al. [1] were the first to study consensus

4 In fact, if there is ever a majority of processes that are DOWN

or RECOVERING (where there does not exist a set of messages
currently in the network that will allow any of them to recover),
then no process will ever be able to recover or write again.

in a Crash-Recovery failure model without stable stor-
age. The authors proved that consensus is impossible
to solve in this model unless the number of always-up
processes exceeds the upper bound on processes that
are either eventually-always-down or unstable. Their
failure model, however, differs significantly from ours:
it does not make a distinction between recovering and
operational processes. As a result, it cannot allow pro-
cesses to recover their state, and hence at least one
process must remain always up. Instead, we show that
it is possible to provide stable storage in the Diskless
Crash-Recovery model as long as there is a quorum of
processes that remain operational for a sufficient time.
This allows any process to crash and fail at some point
during the execution of the protocol, which is expected
to happen in long-lived systems.

An interesting trade-off between stable storage and
a majority of correct process is discussed by Martin et
al. [12]. They consider a particular problem in the DCR
model, eventual leader election, that has weaker require-
ments than emulating stable storage in this model. In
particular, this problem can be solved even when pro-
cesses do not always recover the state that they lost.

7 Conclusion
This paper defines the Diskless Crash-Recovery model
(DCR), which supports long-lived distributed services
where nodes may crash and rejoin the system without
their volatile state. Building a correct recovery proto-
col for this environment is surprisingly subtle; to our
knowledge, it has never been addressed in general. All
previous protocols for the specific case of state machine
replication in this model violate safety under certain
failure scenarios. We present the first general procedure
for transforming Crash-Stop or Crash-Recovery algo-
rithms that rely on stable storage to the DCR model.
Our algorithm, which uses a crash vector to achieve
global knowledge about recovery progress, remains cor-
rect in all cases and terminates as long as a majority of
nodes remain operational.
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A Description of Safety Violations in
Existing SMR Solutions

As mentioned in Section 4, three prior systems have
proposed protocols for state machine replication in the
Diskless Crash-Recovery model. This appendix shows
safety violating traces for these protocols.

A.1 Viewstamp Replication Revisited
Viewstamped Replication Revisited [10] is a recent ver-
sion of the classic VR protocol [13] that specifically
targets the DCR model.

Basic VR Protocol. VR is a leader-based algorithm;
the system moves through a series of views in which
one node is designated as the leader. That node is re-
sponsible for assigning an order to operations. When
the leader receives a request from a client, it sends
a PREPARE message containing the request and se-
quence number to the other replicas. Upon receiving
a PREPARE, a replica verifies that it is in the same view
as the leader and then records the request in its log
and responds to the leader with a PREPARE-OK. Once
the leader receives PREPARE-OK messages from a ma-
jority of replicas, it executes the request, responds to
the client, and sends a COMMIT message to the other
replicas. The other replicas then execute the request.

VR uses a view change protocol to mask failures
of the leader. If a replica suspects the leader of hav-
ing failed, it notifies the other replicas. These replicas
stop processing requests, increment their view number,
stop processing requests in the old view, and send a
DO-VIEW-CHANGE message to the leader of the new
view. This request includes the log of operations pre-
viously executed or prepared by that replica. Once
the new leader receives DO-VIEW-CHANGE messages
from a majority of replicas, it selects the longest log,
and sends a START-VIEW message to notify the other
replicas that they can resume normal operation. This
protocol ensures that all successfully completed opera-
tions persist across view changes: each such operation
must have completed at a majority of replicas, and a
majority of replicas send logs to their leader, so the
new leader will have learned about that operation from
at least one replica.

As described in Section 4, a key invariant in VR is
that once a node has sent a DO-VIEW-CHANGE mes-
sage to the leader of a view, it must never accept new
operations in prior views – otherwise these operations
could be lost after the view change. A recovery pro-
tocol must ensure that this property continues to hold

even if replicas crash and recover.

Diskless Recovery. The original version of VR used
stable storage for logging view numbers during view
changes (and only for this purpose). VR Revisited elim-
inates this use of stable storage, attempting to emulate
it with a write to a quorum.

To achieve this goal, VR Revisited uses two addi-
tions to the protocol, described in Section 4. First, it
introduces a recovery protocol, where a recovering
node contacts all other replicas and waits for a re-
sponse from a quorum of replicas with matching view
number. Second, it adds another phase to the view
change protocol: nodes stop processing requests when
they notice the need for a view change and send a
START-VIEW-CHANGE message to all other replicas;
they only send the DO-VIEW-CHANGE message upon
receiving START-VIEW-CHANGE messages from a quo-
rum of replicas.

Failure Trace. Simply replacing a log to stable stor-
age with a write to a quorum is not sufficient to ensure
correct recovery. In Figure 1, we show a trace with 3
processes, in which a new leader (NL) mistakenly over-
writes the decision of a previous leader (OL).

� Initially, NL suspects OL of failing, and sends a
START-VIEW-CHANGE message to node 1 to switch
to view 1.

� NL crashes immediately after sending this message
– before node 1 receives it – then immediately ini-
tiates recovery. It sends RECOVERY messages and
receives RECOVERY-RESPONSE messages from OL
and 1, both of which are in view 0 – so NL recovers
in view 0.

� Node 1 receives the START-VIEW-CHANGE message
sent by the previous incarnation of NL

� Node 1 sends a START-VIEW-CHANGE message
to NL for view 1. Because node 1 has a quo-
rum of START-VIEW-CHANGE messages for view
1 (its own and the one from NL), it also sends a
DO-VIEW-CHANGE message to NL. Both messages
are delayed by the network.

� Node 1 crashes and immediately recovers, sending
RECOVERY messages to and receiving responses
from OL and NL – both of which are in view 0.

� NL receives START-VIEW-CHANGE and
DO-VIEW-CHANGE messages from node 1. It
has a quorum of START-VIEW-CHANGE messages,
so it sends a DO-VIEW-CHANGE message for view
1. This is enough for it to complete the view change.
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Recovery response

Start-View-Change
Do-View-Change
Start-View for View 1 X Crash
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Figure 1: Trace showing safety violation in View-
stamped Replication Revisited [10]

It sends a START-VIEW message.
� Until the START-VIEW message is received, nodes

OL and 1 are still in view 0 and do not believe a
view change is in progress. Thus, they can commit
new operations, which the new leader NL will not
know about, leaving the system in an inconsistent
state..

In this trace, messages are reordered inside the net-
work. In particular, messages are reordered across fail-
ures, i.e., messages from a prior incarnation of a pro-
cess are sometimes delivered after messages from a
later one. A network with FIFO communication chan-
nels would not allow the violation described above:
recovering nodes will receive a reply to their recov-
ery message only after their previous messages (e.g.,
START-VIEW-CHANGE message) have been received.
However, message reordering is not required for this
failure case: we have found a a trace with 7 nodes that
leads to the same behavior, even with FIFO communi-
cation channels, as shown in Figure 2.

A.2 Paxos Made Live
Paxos Made Live is Google’s production implemen-
tation of a Paxos [2]. It is based on the well-known
Multi-Paxos optimization which chains together multi-
ple instances of Paxos [9] and is effectively equivalent
to VR. This system primarily uses stable storage to sup-
port crash recovery, but because disks can become cor-
rupted or otherwise fail, the authors propose a version
that allows recovery without disks.

Recovery Protocol. On recovery, a process first uses
a catch-up mechanism to bring itself up-to-date. The
specific mechanism it uses is not described, but pre-

sumably it is an application-level state transfer from
a quorum of correct processes as in VR. In order to
ensure consistency, the recovering process is not al-
lowed to participate in the protocol until it observes
a completed instance of successful consensus after
its recovery, i.e., until it learns that at least a quo-
rum have agreed on a value for a new consensus in-
stance. This mechamism suffers from a similar prob-
lem to the one in VR. Although it protects against los-
ing ACKNOWLEDGEMENTs (i.e., PREPARE-OK mes-
sages in VR), it does not protect against losing
PROMISEs made to potential new leaders (i.e., VR’s
DO-VIEW-CHANGE messages).

Failure Trace. Figure 3 shows a trace with 5 pro-
cesses that leads to a new leader mistakenly deciding a
new value for a prior successful instance of consensus,
overwriting the decision of the previous leader:

� Initially, node OL is the leader.
� Node NL suspects the leader of having failed, so

sends a PROPOSE message proposing itself as the
next leader.

OL NL 1 2 3 4 5

X

X

X

X

X

X

X

X

X

X

X

Recovered process in View 0
Recovery response Start-View-Change

Do-View-Change
Start-View for View 1

X Crash
Old LeaderOL
New LeaderNL

Ti
m

e

Figure 2: Trace showing safety violation in View-
stamped Replication Revisited [10], assuming FIFO
channels
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Figure 3: Trace showing safety violation in Paxos Made
Live [2]

� Node 1 receives NL’s proposal, and sends a
PROMISE to NL, promising that it will not accept
any further operations from OL.

� Node 1 crashes and immediately recovers.
� OL selects a new value for the next instance, C1, and

sends ACCEPT and receives ACKNOWLEDGEMENT

messages from nodes 2 and 3. The operation is com-
mitted, and node 1 completes recovery because it
has now observed an instance of consensus.

� OL selects a value for instance C2, and sends
ACCEPTs and receives ACKNOWLEDGEMENTs from
nodes 1 and 3.

� Node 3 then receives NL’s PROPOSE and sends NL
a PROMISE.

� NL has now received a quorum of PROMISE mes-
sages: from itself, node 3, and the previous incarna-
tion of node 1. None of these observed consensus
instance C2, so NL can now start instance 2 of con-
sensus and overwrite the previous value with its own
ACCEPT messages.

A.3 JPaxos
JPaxos [6] is a state machine replication protocol based
on Paxos. It is a hybrid between Multi-Paxos and VR,
replacing promises with views. The protocol is pre-
sented in several deployment options, including one
that does not use stable storage, i.e., supports the Disk-
less Crash-Recovery model.5

Recovery Protocol. JPaxos provides a protocol for
the DCR model called epoch-based recovery. This pro-
tocol is similar in spirit to our use of crash vectors: it

5The protocol is actually presented as using stable storage on
process initialization, but only to store a monotonic value on write.
The monotonic counter available in our DCR model fills this need.

attempts to maintain a vector clock of how many times
each node has crashed and recovered. Each node up-
dates this vector when it sends a recovery response to
another node, and includes a copy of its vector in the
PROPOSE-OK messages that it uses to commit to a new
view (i.e., the equivalent of the DO-VIEW-CHANGE

message). It then uses these vectors to discard all
PROPOSE-OK messages that do not come from a con-
sistent quorum.

JPaxos’s epoch-based recovery protocol has one crit-
ical difference from ours. It treats recovery as complete
once it has received RECOVERY-ANSWER messages
from a quorum of replicas. In contrast, our protocol
requires recovery responses from a consistent quorum
of replicas. That is, it discards recovery responses from
the quorum if it learned that the replica that sent the
response itself crashed and recovered.

This subtle change has important implications for
correctness. Without this, JPaxos does not correctly
handle recovery of nodes when the nodes they are re-
covering from can themselves crash and recover. When
this happens, JPaxos can allow a node to recover in a
way that simultaneously 1) causes the node to lose the
promise that it made in a previous PREPARE-OK, yet 2)
does not allow other nodes to detect that the promise
might have been lost. We give such an example below.

OL NL 1

Recovered process
Recovery response

Prepare & PrepareOK

X Crash

X

2 3

OL Old Leader
NL New Leader

Ti
m

e

X

X

Recovery & RecoveryAnswer

(0,0,0,0,0)

(0,0,0,1,1)

Figure 4: Trace showing safety violation in JPaxos

Failure Trace. Figure 4 shows a trace in which a
process (node 1 in the figure) commits to a new view
via a PREPARE-OK message, then crashes and recovers.
When it recovers, it recovers in the previous view with-
out having learned of its promise; however, the new
leader (NL) does not learn about node 1’s crash and re-
covery, and therefore does not discard its PREPARE-OK

message.
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� The system starts in a view where OL is the leader,
and all nodes have epoch vector p0,0,0,0,0q.

� Node NL suspects OL of having failed, so sends out
a PREPARE message proposing itself as the leader of
the next view.

� Node 1 receives NL’s PREPARE message and sends
a PREPARE-OK.

� Node 1 crashes and immediately recovers. It sends
a RECOVERY message to node 2, and receives a
RECOVERY-ANSWER. Node 2’s epoch vector is now
p0,0,1,0,0q

� Node 2 crashes and immediately recovers. It
sends a RECOVERY message and receives
RECOVERY-ANSWERs from nodes OL, NL,
and 3. All of these have epoch vector p0,0,0,1,0q,
so 2 now has this vector as well – in other words, it
has lost its knowledge that 1 crashed.

� Node 1 sends a RECOVERY message to node 3,
and receives a reply. Node 3’s epoch vector is now
p0,0,1,1,0q.

� Node 3 crashes and immediately recovers, commu-
nicating with nodes OL, NL, and 2 during recovery.
After recovery, its epoch vector is p0,0,0,1,1q.

� NL sends a PREPARE message to 3, and receives
a PREPARE-OK responses. It now has a quorum of
PREPARE-OK responses from itself, 1, and 3, so it
can start a new view.

� Node 1 sends a RECOVERY message to node OL,
and receives a response. It is now fully recovered in
the original view.

� OL can now commit operations (via the quorum of
itself, 1, and 2) which will not appear in NL’s new
view.

Our protocol avoids this problem by checking for a
consistent quorum on recovery. When node 1 receives
a recovery response from OL, that response will have
crash vector p0,0,0,1,1q – and so node 1 will discard
the earlier recovery responses it received from 2 and 3.
It does so because it has learned that those nodes have
crashed and recovered, and therefore their updates to
the crash vector may not be stable.
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