
When Should The Network Be The Computer?
Dan R. K. Ports

dan@drkp.net
Microsoft Research
Redmond, WA

Jacob Nelson
Jacob.Nelson@microsoft.com

Microsoft Research
Redmond, WA

Abstract
Researchers have repurposed programmable network de-
vices to place small amounts of application computation in
the network, sometimes yielding orders-of-magnitude per-
formance gains. At the same time, effectively using these
devices requires careful use of limited resources and manag-
ing deployment challenges.
This paper provides a framework for principled use of

in-network processing. We provide a set of guidelines for
building robust and deployable in-network primives, along
with a taxonomy to help identify which applications can ben-
efit from in-network processing and what types of devices
they should use.

CCS Concepts • Networks → In-network processing;
Data center networks; • Software and its engineering →
Distributed systems organizing principles.
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1 Introduction
Datacenters are no longer limited to commodity hardware.
The end of Moore’s law and economies of scale in the largest
datacenters make deploying custom architectures a realistic
option. Reconfigurable devices are being deployed at large
scale – notably in the network path, where programmable
switches [5, 7, 49], FPGAs [11, 31], and other smart NICs [8,
34] are available. These devices allow a limited form of in-
network computing: application-specific functions can be run
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in hardware at line rate, offering orders of magnitude higher
throughput and lower latency than can be achieved by a
traditional server.
Given the performance gains possible with in-network

computing, it’s no surprise that researchers have explored
a variety of new applications in recent years. Traditional
networking applications, such as congestion control [40, 41],
load balancing [20, 33], and packet scheduling [42] are only
the beginning. In-network computing can be used to im-
plement “systems” functionality such as consensus proto-
cols [9, 10, 27, 36], concurrency control [17, 26], aggrega-
tion primitives [32, 38, 39], and query processing opera-
tors [13, 25]. Other work offloads entire applications to pro-
grammable devices, including key-value stores [46], network
protocols like DNS [43], and even industrial feedback con-
trol [37].

Thus far, in-network computing research has studied par-
ticular applications and how they might be implemented in
network devices. We believe it is time to take a step back
and examine not just what in-network computing can do
but what it should be used for. Towards this end, we aim to
provide a principled approach to the question of when to
use in-network computing and how to deploy it. Specifically,
in this paper:

• We review the benefits and limitations of today’s major
programmable network platforms (§2) and how they
can be deployed (§3).

• We argue for a deployment approach based on a library
of reusable network primitives (§4).

• We provide a taxonomy that classifies which applica-
tions show promise for in-network computing, based
on classifying their computation, state, and communi-
cation requirements (§5).

• We discuss several open research challenges that must
be addressed for in-network computing to have prac-
tical impact (§6).

2 Technology Background
In-network computing is enabled by hardware platforms
that provide flexible, line-rate data processing capabilities
on the network path. We begin with a brief overview of the
platforms available today.

Programmable dataplane switches. A recent generation
of switch ASICs provides programmability on the data path.
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These go beyond prior software-defined networking by al-
lowing custom logic to run at per-packet granularity rather
than on the level of flows. Fully-programmable architectures
like Barefoot’s Tofino [5] and Cavium’s XPliant [49] have at-
tracted the most attention, but programmability is also being
integrated into traditional switch architectures. For example,
Broadcom’s Trident3 line [7] offers five programmable stages
in addition to the conventional fixed-function pipeline.
Many of the architectural details differ between specific

platforms, but in general they follow a reconfigurable match-
action model [6]. Packets pass through a pipeline of 10-20
stages, each using a longest-prefixmatch against a set of rules
to select an associated action. Such an action might consist
of a set of simple ALU operations, accessing a small amount
of memory, that can modify the packet or its destination
port(s).

FPGA network devices. Attaching one or more Ethernet
interfaces to a general-purpose FPGA provides a versatile ar-
chitecture. Smart NICs based on this architecture have been
widely deployed by major cloud providers [2, 11], and similar
devices are commercially available [31, 50]. Although these
are NIC designs, in all cases the programmability is entirely
on the network side, i.e., the host-to-NIC interface remains
unchanged. The same approach has been extended to net-
work switches, though achieving line-rate performance for
many high-speed interfaces remains a challenge: few boards
available today support more than 4 ports at > 10 Gb speed;
the largest FPGAs available support only 20 100 Gb Ethernet
links [16, 48]. Hybrid architectures use a conventional switch
ASIC for the normal case, while routing specially-selected
packets to a FPGA for further processing [3].

Multicore network processors. Other programmable NICs
use many general-purpose CPUs for packet processing [8].
These provide more computational power and are easier
to program, though scalability to high throughput is a chal-
lenge: this architecture can’t be used with switches, and even
supporting 100/400 Gb Ethernet is questionable [11].

2.1 The Bottom Line
Despite different architectures and programming models,
several key properties remain constant across in-network
computing platforms:

Line-rate processingwithminimal latency. These devices
are designed to run at the full speed of their interfaces – with
total bandwidth as high as 12.8 Tbit/s for programmable
switches. Programmable switch pipelines achieve similar
latency to conventional switches, and even programmable
NICs have much lower latency than end hosts because plac-
ing the computation close to the network avoids PCIe bus-
and OS-induced latency.

Throughput vs computation. A general tradeoff exists be-
tween total network bandwidth and available computation

per packet. Programmable switches are limited to a handful
of simple arithmetic or logic operations (not even integer
multiplication [40]). FPGAs provide a more flexible trade-
off, but increasing the IO bandwidth reduces available gates
for computation, and multicore SoCs offer the most general
computation but with limited throughput.

Throughput vs storage. Similarly, storage is limited in high-
bandwidth devices. Programmable switches are restricted to
∼ 10MB on-die SRAM. FPGAs have a similar amount, but
can also be configured to use external DRAM at significantly
lower bandwidth. Persistent storage, if available, is not fast
enough for line-rate access.

We do not foresee either of these tradeoffs changing dra-
matically, as they are tied to fundamental architecture con-
straints. As long as devices aim tomeet line-rate performance
requirements, computation and storage must be on-die and
meet strict timing requirements.

3 Deployment Approaches
We envision two basic deployment options for in-network
computing devices:

In-fabric deployment is “true” in-network computing: com-
putation is placed on the network path, using programmable
switches or NICs in the place of conventional ones. This
achieves two of the key benefits of in-network computing:
(1) all traffic flowing through a switch or NIC is captured,
potentially giving a global view of traffic to a rack or cluster,
and (2) there is no additional latency to route packets to the
device. The main tradeoff is that the limited computation
and memory resources become even more constrained, as it
must support conventional routing and forwarding logic as
well.

End-device deployment is an alternative where in-network
processing devices are used, but separately from the fabric.
Rather, they are attached to the network as a normal device –
in essence, a specialized accelerator. This doesn’t provide the
same latency benefits as an in-fabric deployment, though it
can still provide higher throughput and lower latency than a
conventional server. The major benefit is incremental avail-
ability: a few devices can be deployed without rearchitecting
the entire datacenter network.

In the long term, the in-fabric approach offers the greatest
computational and latency benefits. It does not require addi-
tional hardware, beyond the availability of programmable
network devices; experience has shown that this already
provides a measurable benefit for FPGA NICs. In the interim,
we expect to see end-device deployments first, offering a
way to experiment with programmable hardware for specific
applications with less deployment and management over-
head. However, in addition to the additional cost of dedicated
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hardware devices, datacenter operators are increasingly un-
der pressure to reduce the number of specialized rack- and
cluster-level hardware configurations they support, in order
to ease scheduling and deployment.

4 Principles for In-Network Computation
While in-network devices are capable of computation, they
are far from general-purpose computers. Both the architec-
tural limitations described in §2 and the need to co-locate
computation and existing network functionality on the same
device for an in-fabric deployment mean that the computa-
tion that can be done on each packet is highly restricted.
In this respect, building a system with in-network com-

putation is quite different than conventional system imple-
mentation. In the same way, it differs from the line of ac-
tive networks research two decades ago that also proposed
moving computation to the network [44]: that work used
general-purpose CPUs for routing [1, 45], allowing far more
complex in-network logic. Revisiting this approach today re-
quires using hardware that can meet the rapidly-increasing
speeds of the datacenter network.

We propose the following principles for effectively using
in-network computation:

Offload primitives, not applications. It is possible, in some
cases, to offload entire applications to programmable net-
work devices. In most cases, though, implementing a full
application-level protocol requires too much computation or
storage to be practical. Instead, designers should identify a
key, common-case primitive from the application that can be
implemented in the network, and leave the rest to a conven-
tional application-level implementation. This is an example
of co-designing the application with the network [36].
We believe this is an important principle both for pro-

grammable switches and NICs. It’s tempting to think that
strict resource limits apply only to programmable switches,
and that it’s possible to offload more functionality to a pro-
grammable NIC. However, experience with programmable
NICs currently being used to implement network virtual-
ization suggest that FPGA space is a scarce resource: any
available space is quickly snatched up by different groups
wanting to implement new functionality.

Make primitives reusable. Beyond supporting deviceswith
limited computational capacity, the offload-primitives ap-
proach also makes system development more practical. Pro-
gramming for a FPGA or programmable switch requires
considerably more development effort, arguing for leaving
most application logic in regular software. And keeping the
in-network functionality small eliminates the need for it to
be updated regularly, a complex deployment problem.

These benefits are magnified when primitives are reusable
across different applications, suggesting there is much value
in identifying a library of reusable primitives with standard

interfaces. While prior work is highly application-specific,
there is some evidence that primitives may be reusable:
timestamping-like primitives have been used not just for con-
sensus [27] and transactions [26], but also network debug-
ging [4], and in-network aggregation has been proposed for
DNN training [38, 39], database queries [25], and streaming
network telemetry [13]. Identifying application-independent
primitives leads naturally into a standardization process, and
early IRTF efforts are ongoing [15].

Preserve fate sharing. Network devices fail. Their failure
should not render unavailable a system that is using them
for computation. This means that systems must be able to
recover from switch or NIC failure. An exception is when the
device already represents a single point of failure for a set of
nodes, e.g., a NIC for one server or a top-of-rack switch.

Keep state out of the network. A key way to achieve fault
tolerance is to maintain only soft state in network devices;
in the event of their failure, an application-level protocol can
recover the lost data from servers.

Minimal interference. New primitives should first do no
harm to existing network functionality. For example, they
should not interfere with policies for how packets are routed
unless absolutely necessary. This reduces the potential im-
pact to network reliability.

5 Classifying Potential Benefits
To help choose the right primitives to run in the network,
and the right platform and deployment model, it is valuable
to be able to estimate the benefit that could be obtained by
using in-network computing for a primitive. To this end, we
propose a taxonomy of in-network computing applications.
The goal is to classify primitives by whether they will be
compute-, memory-, and/or bandwidth-bound; with that
information, decisions about platform and deploymentmodel
can be made.
We classify applications along three axes. For each axis,

we primarily consider the asymptotic behavior of the appli-
cation. In the applications we studied, the variable is often
the packet size n, the number of replicas r , or the application
working set size s . However, both asymptotic and actual val-
ues matter: an application with O(n2) behavior may fit only
if n is small, and an application with O(s) operations per
packet may be impractical if s is too large. The asymptotic
values provide a starting point for further investigation. The
three axes are:

Operations per packet. How many operations must be per-
formed to process a received packet? Most applications we
examined either execute O(1) operations per packet (the
minimum), or O(n) operations, where n is the packet length.
Applications with > O(n) operations will be challenging to
run on in-network computation devices. As a shorthand, we
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classify applications along this axis as C (constant), L (linear),
or G (greater than linear).

State per packet. How much data is required to be resident
in each in-network computing device to process a packet?
For many applications, only a fraction of this data may be
touched while processing each packet, but which data to
access may not be known until the packet is received. We
see three common cases here: O(1) state (the minimum),
O(n) state, or O(s) state, where s is the application working
set size. Again, we classify applications along this axis as C
(constant), L (linear), or G (greater than linear).

Packet gain. For each packet received by an in-network
computing device, how many packets are sent? We see three
primary cases here: those with O(1) behavior that emit the
same number of packets as they consume; those with O(r )
behavior that broadcast their output to r replicas, and those
with O(1/r ) behavior, which emit a single aggregate result
from data collected from r replicas. On this axis, we clas-
sify applications as - (less than constant), C (constant), or +
(greater than constant).

Classifying applications. We label an application by com-
bining the three axes: a system with constant operations
per packet, linear state, and high packet gain is labeled CL+.
Once an application has been classified, the dominant axis
is determined, first by considering asymptotic behavior, and
then by comparing actual values if the asymptotic compari-
son is ambiguous. We give precedence to packet gain when
possible: if an application has non-constant packet gain, it
can obtain significant benefits from running in a switch due
to its high degree of connectivity, but only if its state and
compute limits are compatible with the switch’s limitations.
Otherwise, the dominant axis is either operation count or
state.

Table 1 shows our estimates of the behavior of a number of
recently-published in-network computing systems according
to our taxonomy. We see some common themes: first, most
systems have O(1) operations per packet, and only one has
more than the packet size. This is to be expected, since these
systems have already been adapted for in-network operation.
Second, most systems have linear state, but the magnitude of
that state varies significantly; linear state is not a guarantee
of implementability. We now explain the classification of a
few applications.

Network sequencing [26, 27] accelerates replication through
an in-network sequencing primitive. This is a CC+, gain-
dominated application in our taxonomy. Since computation
and state requirements are minimal, in-switch implementa-
tion is ideal.

Cloud providers accelerate virtual networks by offloading
policy and filtering to hardware with a lookup table for active
flows as primitive. This is a CLL, state-dominated application,
and is best suited for middlebox instead of a switch, for two

reasons: First, the packet gain is 1, so a switch provides no
throughput benefit. Second, while the state per packet is
linear in the flow table size, the actual flow table size is large
(> 1 million flows [11]). This is practical only in an FPGA or
NPU with external DRAM. Azure SmartNIC [11] uses this
design.
In-network storage is a CLC application, and – not sur-

prisingly – state-dominated. Our taxonomy suggests that it
therefore may not be well-suited to programmable switches.
At first glance, this stands in contrast to recent efforts that
have shown that programmable switch implementations are
possible [18, 19]. However, these are specifically limited to
restricted applications (e.g., small caches [19]) for the same
reason. We believe that the resource limits will prove even
more restrictive in production environments, making designs
that use FPGAs with external DRAM [46] or maintain only
metadata in the switch [28, 29] a more practical alternative.
Deep neural network training can be accelerated with

network support [30, 38, 39] uses a primitive that sums vec-
tors from multiple replicas in network devices rather than in
a parameter server. (Database reductions can use a similar
primitive [25].) This is a LL-, gain-dominated application
due to the reduction in communication with the parameter
server. Since the packet gain is less than 1, implementation in
a switch will provide the most benefit as long as the computa-
tion and state requirements can be satisfied. Both of these are
linear in the size of the packet, so a switch implementation
should be possible (and is ongoing work).
In-network inference of deep neural networks, on the

other hand, actually does the entire computation in the de-
vice. This is a GLC application whose dominant axis is com-
putation; one implementation [12] doesO(d2) operations for
inputs of dimension d for a long short-term memory (LSTM)
network. In terms of actual values this is 64 million opera-
tions and 32MB of state. Clearly this would not fit in a switch;
it fits in an FPGANIC only by using special narrow-precision
numeric representations.

6 Open Challenges
Beyond the question of which applications are a good fit,
there are many challenges that must be addressed to deploy
in-network computation in a large-scale, realistic environ-
ment. Some of these have not received much attention in the
research community; we aim to shine light on them here.

Scale and decentralization. Datacenter networks contain
thousands of switches. Many prior systems (including some
of our own work!) have assumed that it is feasible to ensure
that a single switch handles all traffic destined for a particular
application. This may be practical for certain small-scale
systems, e.g., a rack-scale storage system or a dedicated ML
training cluster. In general, however, it requires restricting
either the placement of servers to specific racks within a
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In-network primitive Ops/packet State/packet Packet gain Class Dominant

Network sequencing [26, 27] O(1) O(1) O(|replicas|) CC+ Gain
Replicated storage [18] O(1) O(|dataset size|) O(1) CLC State
Caching [19, 29] O(1) O(ln(|dataset size|)) O(1) CLC State
DNN training (allreduce) [30, 38, 39] O(|packet|) O(|packet|) O(1/|replicas|) LL- Gain
DNN inference [12] O(|input size|2) O(|model size|) O(1) GLC Ops
Database reductions [25] O(|packet|) O(|elements|) O(1/|replicas|) LL- Gain
Database hash joins [25] O(1) O(|elements|) < O(1) CL- State
Virtual networking [11] O(1) O(|flow table|) O(1) CLC State
In-band network telemetry [22] O(1) O(1) O(1) CCC Ops

Table 1. Classifying recently-published in-networking computing primitives according to our taxonomy.

datacenter or the network routes taken to access them. Both
are barriers to adoption.
Scalable systems that treat the network not just as one

switch but as a distributed system of switches are needed.
Many of the techniques needed have already been explored,
e.g., replicating data across switches [10, 18] or accessing
remote device memory [23]. We suggest using these not as
applications in their own right but as abstractions to build
other in-network applications.

In-device parallelism. Network processors often have par-
allel pipelines with restricted communication between them
– a programmable switch might have 4 pipelines of 16 ports
each [5]. Many systems have not been tested at enough scale
to require multiple pipelines, and the lack of inter-pipeline
shared state may pose problems. This is a restricted case
of the multi-device parallelism discussed above. However,
it may have simpler or more efficient solutions, e.g., care-
fully selecting the output pipeline or recirculating packets
to a new input pipeline in order to ensure that the correct
computational state is available.

Logical vs wire messages. Network devices do their pro-
cessing at the packet level. This doesn’t always correspond
to the logical requests that a system operates at – indeed, the
TCP stream abstraction specifically obscures this. Despite
the ubiquity of TCP applications, most in-network compu-
tation systems today work exclusively with UDP messages.
This semantic gap must be bridged.

Encryption. Network devices can’t process data that they
can’t read, and network traffic is increasingly encrypted,
even within a datacenter. Two things give us hope that this
problem is solvable. First, many primitives operate on meta-
data that is not as sensitive, e.g., assigning sequence numbers
to packets, and (with careful protocol design) could be left un-
encrypted. Second, homomorphic encryption techniques al-
low computation on encrypted data. While these are infeasi-
bly expensive for general functions, the types of computation
done in the network are by necessity simple, restricted ones –
e.g., summing integers for in-network aggregation, or count-
ing packets for in-network telemetry – lending tractability

to the problem. Work on privacy-preserving middleboxes
has demonstrated feasibility for some applications [24].

Multitenancy. If multiple applications are running on the
same network device, how will contention be resolved? This
question has largely remained unaddressed – perhaps be-
cause the killer apps for this functionality have not yet
emerged. Much like the earliest computers, today’s pro-
grammable devices effectively run on the data plane a single
monolithic program that assumes unfettered access to all
hardware resources. Classic operating system abstractions
like virtualization, resource management, and protection
domains are needed. Despite the “operating system” term,
we imagine that this would in fact be achieved primarily
by compile-time mechanisms that implement resource parti-
tioning (cf. [21]).

Isolation. Looking further, we may also wish to support
mutually-distrusting tenants, e.g., to allow cloud customers
to deploy their own primitives. This poses obvious security
challenges – not just between the different tenants, but also
the network operator, who will be understandably reluc-
tant to allow untrusted code to run on their infrastructure.
Initially, such isolation will likely be achieved by running
customer code on separate devices – as supported by the
end-device deployment model. Safely consolidating these
onto a single device will require defining a security model
that specifies which traffic a given client can view and how
it can be manipulated. This model must then be enforced on
client-provided programs, ideally using formal methods to
provide provable non-interference properties. In the future,
manufacturers could include hardware isolation features in
their designs: for instance, reserved pipeline stages and mem-
ory, or hardware-enclave-like functionality, as proposed by
recent research [14, 35, 47].

Interoperability. Large-scale deployments need to support
multiple hardware platforms: single-vendor solutions are
out of the question for cost and supply chain reasons. High-
level languages like P4, NPL, or PX aim to provide device
independence – but the reality is quite different. Even setting
aside that different vendors offer conflicting standards, what
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compiles in P4 on one device may not be the same as on
another with different hardware resources. In the future,
the existence of conflicting software on the same device,
as described above, will exacerbate this challenge. Recent
research in optimizers and program synthesis tools may help
make true device-independence more of a reality.

7 Conclusion
Offloading application-level computation to programmable
network devices presents major design and deployment chal-
lenges, but also offers impressive end-to-end performance
gains. We argue that these benefits are best extracted via a
library of reusable network primitives. Our taxonomy pro-
vides a guide to which primitives will have the most value:
those that require little per-packet state or computation, or
those that can reduce network utilization.
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