
Disciplined Inconsistency
Brandon Holt, James Bornholt, Irene Zhang, Dan Ports, Mark Oskin, Luis Ceze

{bholt,bornholt,iyzhang,drkp,oskin,luisceze}@cs.uw.edu
Technical Report UW-CSE-16-06-01

Abstract
Distributed applications and web services, such as on-
line stores or social networks, are expected to be scalable,
available, responsive, and fault-tolerant. To meet these
steep requirements in the face of high round-trip laten-
cies, network partitions, server failures, and load spikes,
applications use eventually consistent datastores that al-
low them to weaken the consistency of some data. How-
ever, making this transition is highly error-prone because
relaxed consistency models are notoriously difficult to un-
derstand and test.

In this work, we propose a new programming model
for distributed data that makes consistency properties ex-
plicit and uses a type system to enforce consistency safety.
With the Inconsistent, Performance-bound, Approximate
(IPA) storage system, programmers specify performance
targets and correctness requirements as constraints on per-
sistent data structures and handle uncertainty about the re-
sult of datastore reads using new consistency types. We
implement a prototype of this model in Scala on top of an
existing datastore, Cassandra, and use it to make perfor-
mance/correctness tradeoffs in two applications: a ticket
sales service and a Twitter clone. Our evaluation shows
that IPA prevents consistency-based programming errors
and adapts consistency automatically in response to chang-
ing network conditions, performing comparably to weak
consistency and 2-10× faster than strong consistency.
1. Introduction
To provide good user experiences, modern datacenter ap-
plications and web services must balance the competing re-
quirements of application correctness and responsiveness.
For example, a web store double-charging for purchases or
keeping users waiting too long (each additional millisec-
ond of latency [26, 36]) can translate to a loss in traffic
and revenue. Worse, programmers must maintain this bal-
ance in an unpredictable environment where a black and
blue dress [42] or Justin Bieber [38] can change applica-
tion performance in the blink of an eye.

Recognizing the trade-off between consistency and per-
formance, many existing storage systems support config-
urable consistency levels that allow programmers to set

the consistency of individual operations [4, 11, 34, 58].
These allow programmers to weaken consistency guaran-
tees only for data that is not critical to application correct-
ness, retaining strong consistency for vital data. Some sys-
tems further allow adaptable consistency levels at runtime,
where guarantees are only weakened when necessary to
meet availability or performance requirements (e.g., dur-
ing a spike in traffic or datacenter failure) [59, 61]. Un-
fortunately, using these systems correctly is challenging.
Programmers can inadvertently update strongly consistent
data in the storage system using values read from weakly
consistent operations, propagating inconsistency and cor-
rupting stored data. Over time, this undisciplined use of
data from weakly consistent operations lowers the consis-
tency of the storage system to its weakest level.

In this paper, we propose a more disciplined approach
to inconsistency in the Inconsistent, Performance-bound,
Approximate (IPA) storage system. IPA introduces the fol-
lowing concepts:
• Consistency Safety, a new property that ensures that

values from weakly consistent operations cannot flow
into stronger consistency operations without explicit
endorsement from the programmer. IPA is the first stor-
age system to provide consistency safety.

• Consistency Types, a new type system in which type
safety implies consistency safety. Consistency types de-
fine the consistency and correctness of the returned
value from every storage operation, allowing program-
mers to reason about their use of different consistency
levels. IPA’s type checker enforces the disciplined use
of IPA consistency types statically at compile time.

• Error-bounded Consistency. IPA is a data structure
store, like Redis [54] or Riak [11], allowing it to pro-
vide a new type of weak consistency that places nu-
meric error bounds on the returned values. Within
these bounds, IPA automatically adapts to return the
strongest IPA consistency type possible under the cur-
rent system load.

We implement an IPA prototype based on Scala and Cas-
sandra and show that IPA allows the programmer to trade
off performance and consistency, safe in the knowledge
that the type system has checked the program for consis-

1

Showings

! Grand Theater

Star Wars 7pm
Remaining:

STAR WARS 7pm

5

Purchase"Star Wars 9pm

Spectre 6:30pm

// adjust price based on number of tickets left

def computePrice(ticketsRemaining: Int): Float

// called from purchaseTicket & displayEvent

def getTicketCount(event: UUID): Int =

 // use weak consistency for performance

 readWeak(event+"ticket_count")

def purchaseTicket(event: UUID) = {

 val ticket = reserveTicket(event)

 val remaining = getTicketCount(event)

 // compute price based on inconsistent read

 val price = computePrice(remaining)

 display("Enter payment info. Price: ", price)

}

STAR WARS 7pm

Enter payment info.

Price: $15

Figure 1. Ticket sales service. To meet a performance tar-
get in displayEvent, developer switches to a weak read for
getTicketCount, not realizing that this inconsistent read will be
used elsewhere to compute the ticket price.

tency safety. We demonstrate experimentally that these
mechanisms allow applications to dynamically adapt cor-
rectness and performance to changing conditions with
three applications: a simple counter, a Twitter clone based
on Retwis [55] and a Ticket sales service modeled after
FusionTicket [1].

2. The Case for Consistency Safety
Unpredictable Internet traffic and unexpected failures
force modern datacenter applications to trade off consis-
tency for performance. In this section, we demonstrate the
pitfalls of doing so in an undisciplined way. As an exam-
ple, we describe a movie ticketing service, similar to AMC
or Fandango. Because ticketing services process financial
transactions, they must ensure correctness, which they can
do by storing data in a strongly consistent storage system.
Unfortunately, providing strong consistency for every stor-
age operation can cause the storage system and application
to collapse under high load, as several ticketing services
did in October 2015, when tickets became available for
the new Star Wars movie [21].

To allow the application to scale more gracefully
and handle traffic spikes, the programmer may chose to
weaken the consistency of some operations. As shown
in Figure 1, the ticket application displays each showing of
the movie along with the number of tickets remaining. For
better performance, the programmer may want to weaken
the consistency of the read operation that fetches the re-
maining ticket count to give users an estimate, instead of
the most up-to-date value. Under normal load, even with
weak consistency, this count would often still be correct
because propagation is typically fast compared to updates.
However, eventual consistency makes no guarantees, so

under heavier traffic spikes, the values could be signifi-
cantly incorrect and the application has no way of know-
ing by how much.

While this solves the programmer’s performance prob-
lem, it introduces a data consistency problem. Suppose
that, like Uber’s surge pricing, the ticket sales application
wants to raise the price of the last 100 tickets for each
showing to $15. If the application uses a strongly consis-
tent read to fetch the remaining ticket count, then it can
use that value to compute the price of the ticket on the
last screen in Figure 1. However, if the programmer reuses
getTicketCount which used a weak read to calculate the
price, then this count could be arbitrarily wrong. The ap-
plication could then over- or under-charge some users de-
pending on the consistency of the returned value. Worse,
the theater expects to make $1500 for those tickets with the
new pricing model, which may not happen with the new
weaker read operation. Thus, programmers need to be care-
ful in their use of values returned from storage operations
with weak consistency. Simply weakening the consistency
of an operation may lead to unexpected consequences for
the programmer (e.g., the theater not selling as many tick-
ets at the higher surge price as expected).

In this work, we propose a programming model that can
prevent using inconsistent values where they were not in-
tended, as well as introduce mechanisms that allow the
storage system to dynamically adapt consistency within
predetermined performance and correctness bounds.
3. Programming Model
We propose a programming model for distributed data
that uses types to control the consistency–performance
trade-off. The Inconsistent, Performance-bound, Approx-
imate (IPA) type system helps developers trade consis-
tency for performance in a disciplined manner. This sec-
tion presents the IPA programming model, including the
available consistency policies and the semantics of oper-
ations performed under the policies. §4 will explain how
the type system’s guarantees are enforced.
3.1. Overview
The IPA programming model consists of three parts:
• Abstract data types (ADTs) implement common data

structures (such as Set[T]) on distributed storage.
• Consistency policies on ADTs specify the desired con-

sistency level for an object in application-specific terms
(such as latency or accuracy bounds).

• Consistency types track the consistency of operation re-
sults and enforce consistency safety by requiring devel-
opers to consider weak outcomes.

Programmmers annotate ADTs with consistency policies
to choose their desired level of consistency. The consis-
tency policy on the ADT operation determines the consis-
tency type of the result. Table 1 shows some examples; the

2

ADT / Method Consistency(Strong) Consistency(Weak) LatencyBound(_) ErrorTolerance(_)

Counter.read() Consistent[Int] Inconsistent[Int] Rushed[Int] Interval[Int]

Set.size() Consistent[Int] Inconsistent[Int] Rushed[Int] Interval[Int]

Set.contains(x) Consistent[Bool] Inconsistent[Bool] Rushed[Bool] N/A
List[T].range(x,y) Consistent[List[T]] Inconsistent[List[T]] Rushed[List[T]] N/A
UUIDPool.take() Consistent[UUID] Inconsistent[UUID] Rushed[UUID] N/A
UUIDPool.remain() Consistent[Int] Inconsistent[Int] Rushed[Int] Interval[Int]

Table 1. Example ADT operations; consistency policies determine the consistency type of the result.

next few sections will introduce each of the policies and
types in detail. Together, these three components provide
two key benefits for developers. First, the IPA type system
enforces consistency safety, tracking the consistency level
of each result and preventing inconsistent values from
flowing into consistent values. Second, the programming
interface enables performance–correctness trade-offs, be-
cause consistency policies on ADTs allow the runtime to
select a consistency level for each individual operation
that maximizes performance in a constantly changing en-
vironment. Together, these systems allow applications to
adapt to changing conditions with the assurance that the
programmer has expressed how it should handle varying
consistency.
3.2. Abstract Data Types
The base of the IPA type system is a set of abstract data
types (ADTs) for distributed data structures. ADTs present
a clear abstract model through a set of operations that
query and update state, allowing users and systems alike
to reason about their logical, algebraic properties rather
than the low-level operations used to implement them.
Though the simplest key-value stores only support prim-
itive types like strings for values, many popular datastores
have built-in support for more complex data structures
such as sets, lists, and maps. However, the interface to
these datatypes differs: from explicit sets of operations for
each type in Redis, Riak, and Hyperdex [11, 25, 31, 54]
to the pseudo-relational model of Cassandra [32]. IPA’s
extensible library of ADTs allows it to decouple the se-
mantics of the type system from any particular datastore,
though our reference implementation is on top of Cassan-
dra, similar to [57].

Besides abstracting over storage systems, ADTs are
an ideal place from which to reason about consistency
and system-level optimizations. The consistency of a read
depends on the write that produced the value. Annotat-
ing ADTs with consistency policies ensures the necessary
guarantees for all operations are enforced, which we will
expand on in the next section.

Custom ADTs can express application-level correctness
constraints. IPA’s Counter ADT allows reading the cur-
rent value as well as increment and decrement operations.
In our ticket sales example, we must ensure that the ticket

count does not go below zero. Rather than forcing all oper-
ations on the datatype to be linearizable, this application-
level invariant can be expressed with a more specialized
ADT, such as a BoundedCounter, giving the implementa-
tion more latitude for enforcing it. IPA’s library is extensi-
ble, allowing custom ADTs to build on common features;
see §5.
3.3. Consistency Policies
Previous systems [4, 11, 34, 58, 61] require annotating
each read and write operation with a desired consistency
level. This per-operation approach complicates reasoning
about the safety of code using weak consistency, and hin-
ders global optimizations that can be applied if the system
knows the consistency level required for future operations.
The IPA programming model provides a set of consistency
policies that can be placed on ADT instances to specify
consistency properties for the lifetime of the object. Con-
sistency policies come in two flavors: static and dynamic.

Static policies are fixed, such as Consistency(Strong)
which states that operations must have strongly consistent
behavior. Static annotations provide the same direct con-
trol as previous approaches but simplify reasoning about
correctness by applying them globally on the ADT.

Dynamic policies specify a consistency level in terms of
application requirements, allowing the system to decide at
runtime how to meet the requirement for each executed
operation. IPA offers two dynamic consistency policies:
• A latency policy LatencyBound(x) specifies a target

latency for operations on the ADT (e.g., 20 ms). The
runtime can choose the consistency level for each is-
sued operation, optimizing for the strongest level that
is likely to satisfy the latency bound.

• An accuracy policy ErrorTolerance(x%) specifies the
desired accuracy for read operations on the ADT. For
example, the size of a Set ADT may only need to
be accurate within 5% tolerance. The runtime can opti-
mize the consistency of write operations so that reads
are guaranteed to meet this bound.

Dynamic policies allow the runtime to extract more perfor-
mance from an application by relaxing the consistency of
individual operations, safe in the knowledge that the IPA
type system will enforce safety by requiring the developer
to consider the effects of weak operations.

3

Rushed[T]

⊤ := Consistent[T]

⊥ := Inconsistent[T]

LocalQuorum[T]Interval[T] ...

Datastore-specific

consistency levels

Figure 2. IPA Type Lattice parameterized by a type T.
Static and dynamic policies can apply to an entire

ADT instance or on individual methods. For example, one
could declare List[Int] with LatencyBound(50 ms),
in which case all read operations on the list are subject to
the bound. Alternatively, one may wish to declare a Set
with relaxed consistency for its size but strong consis-
tency for its contains predicate. The runtime is responsi-
ble for managing the interaction between these policies. In
the case of a conflict between two bounds, the system can
be conservative and choose stronger policies than speci-
fied without affecting correctness.

In the ticket sales application, the Counter for each
event’s tickets could have a relaxed accuracy policy,
ErrorTolerance(5%), allowing the system to quickly
read the count of tickets remaining. An accuracy pol-
icy is appropriate here because it expresses a domain
requirement—users want to see accurate ticket counts. As
long as the system meets this requirement, it is free to re-
lax consistency and maximize performance without vio-
lating correctness. The List ADT used for events has a
latency policy that also expresses a domain requirement—
that pages on the website load in reasonable time.
3.4. Consistency Types
The key to consistency safety in IPA is the consistency
types—enforcing type safety directly enforces consistency
safety. Read operations of ADTs annotated with consis-
tency policies return instances of a consistency type. These
consistency types track the consistency of the results and
enforce a fundamental non-interference property: results
from weakly consistent operations cannot flow into com-
putations with stronger consistency without explicit en-
dorsement. This could be enforced dynamically, as in dy-
namic information flow control systems, but the static
guarantees of a type system allow errors to be caught at
compile time.

The consistency types encapsulate information about
the consistency achieved when reading a value. Formally,
the consistency types form a lattice parameterized by a
primitive type T, shown in Figure 2. Strong read opera-
tions return values of type Consistent[T] (the top ele-
ment), and so (by implicit cast) behave as any other in-
stance of type T. Intuitively, this equivalence is because
the results of strong reads are known to be consistent,
which corresponds to the control flow in conventional
(non-distributed) applications. Weaker read operations re-
turn values of some type lower in the lattice (weak consis-

tency types), reflecting their possible inconsistency. The
bottom element Inconsistent[T] specifies an object with
the weakest possible (or unknown) consistency. The other
consistency types follow a subtyping relation ≺ as illus-
trated in Figure 2.

The only possible operation on Inconsistent[T] is
to endorse it. Endorsement is an upcast, invoked by
Consistent(x), to the top element Consistent[T] from
other types in the lattice:

Γ ⊢ e1 : τ[T] T ≺ τ[T]

Γ ⊢ Consistent(e1) : T

The core type system statically enforces safety by prevent-
ing weaker values from flowing into stronger computa-
tions. Forcing developers to explicitly endorse inconsis-
tent values prevents them from accidentally using incon-
sistent data where they did not determine it was accept-
able, essentially inverting the behavior of current systems
where inconsistent data is always treated as if it was safe to
use anywhere. However, endorsing values blindly in this
way is not the intended use case; the key productivity ben-
efit of the IPA type system comes from the other consis-
tency types which correspond to the dynamic consistency
policies in §3.3 which allow developers to handle dynamic
variations in consistency, which we describe next.
3.4.1. Rushed types
The weak consistency type Rushed[T] is the result of read
operations performed on an ADT with consistency policy
LatencyBound(x). Rushed[T] is a sum (or union) type,
with one variant per consistency level available to the im-
plementation of LatencyBound. Each variant is itself a
consistency type (though the variants obviously cannot be
Rushed[T] itself). The effect is that values returned by a
latency-bound object carry with them their actual consis-
tency level. A result of type Rushed[T] therefore requires
the developer to consider the possible consistency levels
of the value.

For example, a system with geo-distributed replicas
may only be able to satisfy a latency bound of 50 ms with
a local quorum read (that is, a quorum of replicas within
a single datacenter). In this case, Rushed[T] would be the
sum of three types Consistent[T], LocalQuorum[T], and
Inconsistent[T]. A match statement destructures the re-
sult of a latency-bound read operation:

set.contains() match {

case Consistent(x) => print(x)

case LocalQuorum(x) => print(x+", locally")

case Inconsistent(x) => print(x+"???")

}

The application may want to react differently to a lo-
cal quorum as opposed to a strongly or weakly consis-
tent value. Note that because of the subtyping relation
on consistency types, omitted cases can be matched by

4

any type lower in the lattice, including the bottom ele-
ment Inconsistent(x); other cases therefore need only
be added if the application should respond differently to
them. This subtyping behavior allows applications to be
portable between systems supporting different forms of
consistency (of which there are many).
3.4.2. Interval types
Tagging values with a consistency level is useful because
it helps programmers tell which operation reorderings are
possible (e.g. strongly consistent operations will be ob-
served to happen in program order). However, accuracy
policies provide a different way of dealing with inconsis-
tency by expressing it in terms of value uncertainty. They
require knowing the abstract behavior of operations in or-
der to determine the change in abstract state which results
from each reordered operation (e.g., reordering increments
on a Counter has a known effect on the value of reads).

The weak consistency type Interval[T] is the result of
operations performed on an ADT with consistency policy
ErrorTolerance(x%). Interval[T] represents an inter-
val of values within which the true (strongly consistent) re-
sult lies. The interval reflects uncertainty in the true value
created by relaxed consistency, in the same style as work
on approximate computing [15].

The key invariant of the Interval type is that the inter-
val must include the result of some linearizable execution.
Consider a Set with 100 elements. With linearizability, if
we add a new element and then read the size (or if this
ordering is otherwise implied), we must get 101 (provided
no other updates are occurring). However, if size is anno-
tated with ErrorTolerance(5%), then it could return any
interval that includes 101, such as [95,105] or [100,107],
so the client cannot tell if the recent add was included in
the size. This frees the system to optimize to improve per-
formance, such as by delaying synchronization. While any
partially-ordered domain could be represented as an inter-
val (e.g., a Set with partial knowledge of its members), in
this work we consider only numeric types.

In the ticket sales example, the counter ADT’s accuracy
policy means that reads of the number of tickets return
an Interval[Int]. If the entire interval is above zero,
then users can be assured that there are sufficient tickets
remaining. In fact, because the interval could represent
many possible linearizable executions, in the absence of
other user actions, a subsequent purchase must succeed.
On the other hand, if the interval overlaps with zero, then
there is a chance that tickets could already be sold out, so
users could be warned. Note that ensuring that tickets are
not over-sold is a separate concern requiring a different
form of enforcement, which we describe in §5. The re-
laxed consistency of the interval type allows the system
to optimize performance in the common case where there
are many tickets available, and dynamically adapt to con-

tention when the ticket count diminishes.
4. Enforcing consistency policies
The consistency policies introduced in the previous sec-
tion allow programmers to describe application-level
correctness properties. Static consistency policies (e.g.
Strong) are enforced by the underlying storage system;
the annotated ADT methods simply set the desired con-
sistency level when issuing requests to the store. The dy-
namic policies each require a new runtime mechanism to
enforce them: parallel operations with latency monitor-
ing for latency bounds, and reusable reservations for er-
ror tolerance. But first, we briefly review consistency in
Dynamo-style replicated systems.

To be sure of seeing a particular write, strong reads
must coordinate with a majority (quorum) of replicas and
compare their responses. For a write and read pair to
be strongly consistent (in the CAP sense [17]), the repli-
cas acknowledging the write (W) plus the replicas con-
tacted for the read (R) must be greater than the total num-
ber of replicas (W + R > N). This can be achieved, for
example, by writing to a quorum ((N + 1)/2) and read-
ing from a quorum (QUORUM in Cassandra), or writing to
N (ALL) and reading from 1 (ONE) [22]. To support the
Consistency(Strong) policy, the designer of each ADT
must choose consistency levels for its operations which
together enforce strong consistency.
4.1. Latency bounds
The time it takes to achieve a particular level of consis-
tency depends on current conditions and can vary over
large time scales (minutes or hours) but can also vary sig-
nificantly for individual operations. During normal opera-
tion, strong consistency may have acceptable performance
while at peak traffic times the application would fall over.
Latency bounds specified by the application allow the sys-
tem to dynamically adjust to maintain comparable perfor-
mance under varying conditions.

Our implementation of latency-bound types takes a
generic approach: it issues read requests at different con-
sistency levels in parallel. It composes the parallel opera-
tions and returns a result either when the strongest oper-
ation returns, or with the strongest available result at the
specified time limit. If no responses are available at the
time limit, it waits for the first to return.

This approach makes no assumptions about the imple-
mentation of read operations, making it easily adaptable to
different storage systems. Some designs may permit more
efficient implementations: for example, in a Dynamo-style
storage system we could send read requests to all replicas,
then compute the most consistent result from all responses
received within the latency limit. However, this requires
deeper access to the storage system implementation than
is traditionally available.

5

4.1.1. Monitors
The main problem with our approach is that it wastes work
by issuing parallel requests. Furthermore, if the system is
responding slower due to a sudden surge in traffic, then it
is essential that our efforts not cause additional burden on
the system. In these cases, we should back off and only at-
tempt weaker consistency. To do this, the system monitors
current traffic and predicts the latency of different consis-
tency levels.

Each client in the system has its own Monitor (though
multi-threaded clients can share one). The monitor records
the observed latencies of reads, grouped by operation and
consistency level. The monitor uses an exponentially de-
caying reservoir to compute running percentiles weighted
toward recent measurements, ensuring that its predictions
continually adjust to current conditions.

Whenever a latency-bound operation is issued, it
queries the monitor to determine the strongest consistency
likely to be achieved within the time bound, then issues
one request at that consistency level and a backup at the
weakest level, or only weak if none can meet the bound.
In §6.2.1 we show empirically that even simple monitors
allow clients to adapt to changing conditions.
4.2. Error bounds
We implement error bounds by building on the concepts of
escrow and reservations [27, 44, 48, 50]. These techniques
have been used in storage systems to enforce hard limits,
such as an account balance never going negative, while
permitting concurrency. The idea is to set aside a pool of
permissions to perform certain update operations (we’ll
call them reservations or tokens), essentially treating op-
erations as a manageable resource. If we have a counter
that should never go below zero, there could be a num-
ber of decrement tokens equal to the current value of the
counter. When a client wishes to decrement, it must first
acquire sufficient tokens before performing the update op-
eration, whereas increments produce new tokens. The in-
sight is that the coordination needed to ensure that there
are never too many tokens can be done off the critical path:
tokens can be produced lazily if there are enough around
already, and most importantly for this work, they can be
distributed among replicas. This means that replicas can
perform some update operations safely without coordinat-
ing with any other replicas.
4.2.1. Reservation Server
Reservations require mediating requests to the datastore
to prevent updates from exceeding the available tokens.
Furthermore, each server must locally know how many to-
kens it has without synchronizing. We are not aware of
a commercial datastore that supports custom mediation
of requests and replica-local state, so we need a custom
middleware layer to handle reservation requests, similar

Replica 1

Replica 3

Replica 2

Reservation
Server A

6 4

reservations

allocated

Datastore

Reservation
Server B

100

A B

incr(1)

incr(1)

Counter with ErrorTolerance(10%)

read()⇒ 100..106

100

used: 2

local: 5

total: 10
100

used: 0

local: 4

total: 10

Figure 3. Reservations enforcing error bounds.

to other systems which have built stronger guarantees on
top of existing datastores [8, 10, 57].

Any client requests requiring reservations are routed to
one of a number of reservation servers. These servers then
forward operations when permitted along to the underly-
ing datastore. All persistent data is kept in the backing
store; these reservation servers keep only transient state
tracking available reservations. The number of reservation
servers can theoretically be decoupled from the number of
datastore replicas; our implementation simply colocates a
reservation server with each datastore server and uses the
datastore’s node discovery mechanisms to route requests
to reservation servers on the same host.
4.2.2. Enforcing error bounds
Reservations have been used previously to enforce hard
global invariants in the form of upper or lower bounds
on values [10], integrity constraints [9], or logical as-
sertions [37]. However, enforcing error tolerance bounds
presents a new design challenge because the bounds are
constantly shifting. Consider a Counter with a 10% error
bound, shown in Figure 3. If the current value is 100, then
10 increments can be done before anyone must be told
about it. However, we have 3 reservation servers, so these
10 reservations are distributed among them, allowing each
to do some increments without synchronizing. If only 10
outstanding increments are allowed, reads are guaranteed
to maintain the 10% error bound.

In order to perform more increments after a server has
exhausted its reservations, it must synchronize with the
others, sharing its latest increments and receiving any
changes of theirs. This is accomplished by doing a strong
write (ALL) to the datastore followed by a read. Once that
synchronization has completed, those 3 tokens become
available again because the reservation servers all tem-
porarily agree on the value (in this case, at least 102).

Read operations for these types go through reservation
servers as well: the server does a weak read from any
replica, then determines the interval based on how many
reservations there are. For the read in Figure 3, there are
10 reservations total, but Server B knows that it has not
used its local reservations, so it knows that there cannot
be more than 6 and can return the interval [100,106].

6

4.2.3. Narrowing bounds
Error-tolerance policies give an upper bound on the
amount of error; ideally, the interval returned will be more
precise than the maximum error when conditions are favor-
able. The error bound determines the maximum number of
reservations that can be allocated per instance. To allow
a variable number of tokens, each ADT instance keeps a
count of tokens allocated by each server, and when servers
receive write requests, they increment their count to allo-
cate tokens to use. Allocating must be done with strong
consistency to ensure all servers agree, which can be ex-
pensive, so we use long leases (on the order of seconds)
to allow servers to cache their allocations. When a lease
is about to expire, it preemptively refreshes its lease in the
background so that writes do not block.

For each type of update operation there may be a dif-
ferent pool of reservations. Similarly, there could be dif-
ferent error bounds on different read operations. It is up
to the designer of the ADT to ensure that all error bounds
are enforced with appropriate reservations. Consider a Set
with an error tolerance on its size operation. This requires
separate pools for add and remove to prevent the overall
size from deviating by more than the bound in either direc-
tion, so the interval is [v−remove.delta,v+add.delta]
where v is the size of the set and delta computes the
number of outstanding operations from the pool. In some
situations, operations may produce and consume tokens
in the same pool – e.g., increment producing tokens for
decrement – but this is only allowable if updates propa-
gate in a consistent order among replicas, which may not
be the case in some eventually consistent systems.
5. Implementation
IPA is implemented mostly as a client-side library to an off-
the-shelf distributed storage system, though reservations
are handled by a custom middleware layer which medi-
ates accesses to any data with error tolerance policies. Our
implementation is built on top of Cassandra, but IPA could
work with any replicated storage system that supports fine-
grained consistency control, which many commercial and
research datastores do, including Riak [11].

IPA’s client-side programming interface is written in
Scala, using the asynchronous futures-based Phantom [45]
library for type-safe access to Cassandra data. Reserva-
tion server middleware is also built in Scala using Twit-
ter’s Finagle framework [63]. Communication is done be-
tween clients and Cassandra via prepared statements, and
between clients and reservation servers via Thrift remote-
procedure-calls [6]. Due to its type safety features, ab-
straction capability, and compatibility with Java, Scala
has become popular for web service development, in-
cluding widely-used frameworks such as Akka [35] and
Spark [5], and at established companies such as Twitter
and LinkedIn [2, 18, 29].

trait LatencyBound {

 // execute readOp with strongest consistency possible

 // within the latency bound

 def rush[T](bound: Duration,

 readOp: ConsistencyLevel => T): Rushed[T]

}

/* Generic reservaton pool, one per ADT instance.

 `max` recomputed as needed (e.g. for % error) */

class ReservationPool(max: () => Int) {

 def take(n: Int): Boolean // try to take tokens

 def sync(): Unit // sync to regain used tokens

 def delta(): Int // # possible ops outstanding

}

/* Counter with ErrorBound (simplified) */

class Counter(key: UUID) with ErrorTolerance {

 def error: Float // % tolerance (defined by instance)

 def maxDelta() = (cassandra.read(key) * error).toInt

 val pool = ReservationPool(maxDelta)

 def read(): Interval[Int] = {

 val v = cassandra.read(key)

 Interval(v - pool.delta, v + pool.delta)

 }

 def incr(n: Int): Unit =

 waitFor(pool.take(n)) { cassandra.incr(key, n) }

}

Figure 4. Some of the reusable components provided by IPA and
an example implemention of a Counter with error bounds.

The IPA type system, responsible for consistency safety,
is also simply part of our client library, leveraging Scala’s
sophisticated type system. The IPA type lattice is imple-
mented as a subclass hierarchy of parametric classes, us-
ing Scala’s support for higher-kinded types to allow them
to be destructured in match statements, and implicit con-
versions to allow Consistent[T] to be treated as type T.
We use traits to implement ADT annotations; e.g. when the
LatencyBound trait is mixed into an ADT, it wraps each
of the methods, redefining them to have the new semantics
and return the correct IPA type.

IPA comes with a library of reference ADT implemen-
tations used in our experiments, but it is intended to be
extended with custom ADTs to fit more specific use cases.
Our implementation provides a number of primitives for
building ADTs, some of which are shown in Figure 4. To
support latency bounds, there is a generic LatencyBound
trait that provides facilities for executing a specified read
operation at multiple consistency levels within a time limit.
For implementing error bounds, IPA provides a generic
reservation pool which ADTs can use. Figure 4 shows how
a Counter with error tolerance bounds is implemented us-
ing these pools. The library of reference ADTs includes:
• Counter based on Cassandra’s counter, supporting in-

crement and decrement, with latency and error bounds
• BoundedCounter CRDT from [10] that enforces a hard

lower bound even with weak consistency. Our imple-
mentation adds the ability to bound error on the value
of the counter and set latency bounds.

• Set with add, remove, contains and size, supporting
latency bounds, and error bounds on size.

• UUIDPool generates unique identifiers, with a hard limit
on the number of IDs that can be taken from it; built on

7

top of BoundedCounter and supports the same bounds.
• List: thin abstraction around a Cassandra table with a

time-based clustering order, supports latency bounds.
Figure 4 shows Scala code using reservation pools to im-
plement a Counter with error bounds. The actual imple-
mentation splits this functionality between the client and
the reservation server.
6. Evaluation
The goal of the IPA programming model and runtime sys-
tem is to build applications that adapt to changing condi-
tions, performing nearly as well as weak consistency but
with stronger consistency and safety guarantees. To that
end, we evaluate our prototype implementation under a va-
riety of network conditions using both a real-world testbed
(Google Compute Engine [28]) and simulated network
conditions. We start with simple microbenchmarks to un-
derstand the performance of each of the runtime mecha-
nisms independently. We then study two applications in
more depth, exploring qualitatively how the programming
model helps avoid potential programming mistakes in
each and then evaluating their performance against strong
and weakly consistent implementations.
6.1. Simulating adverse conditions
To control for variability, we perform our experiments
with a number of simulated conditions, and then vali-
date our findings against experiments run on globally dis-
tributed machines in Google Compute Engine. We use a lo-
cal test cluster with nodes linked by standard ethernet and
Linux’s Network Emulation facility [62] (tc netem) to in-
troduce packet delay and loss at the operating system level.
We use Docker containers [24] to enable fine-grained con-
trol of the network conditions between processes on the
same physical node.

Table 2 shows the set of conditions we use in our
experiments to explore the behavior of the system. The
uniform 5ms link simulates a well-provisioned datacen-
ter; slow replica models contention or hardware problems
that cause one replica to be slower than others, and geo-
distributed replicates the latencies between virtual ma-
chines in the U.S., Europe, and Asia on Amazon EC2 [3].
These simulated conditions are validated by experiments
on Google Compute Engine with virtual machines in four
datacenters: the client in us-east, and the storage replicas
in us-central, europe-west, and asia-east. We elide the re-
sults for Local (same rack in our testbed) except in Fig-
ure 11 because the differences between policies are negli-
gible, so strong consistency should be the default there.
6.2. Microbenchmark: Counter
We start by measuring the performance of a simple applica-
tion that randomly increments and reads from a number of
counters with different IPA policies. Random operations
(incr(1) and read) are uniformly distributed over 100

Network Condition Latencies (ms)
Simulated Replica 1 Replica 2 Replica 3
Uniform / High load 5 5 5
Slow replica 10 10 100
Geo-distributed (EC2) 1 ± 0.3 80 ± 10 200 ± 50
Actual Replica 1 Replica 2 Replica 3
Local (same rack) <1 <1 <1
Google Compute Engine 30 ± <1 100 ± <1 160 ± <1

Table 2. Network conditions for experiments: latency from client
to each replicas, with standard deviation if high.

100% 100% 0% 0% 100% 100% 0% 0% 100% 83% 0% 0% 100% 0% 0% 0%

(809 ms)

Uniform
(5ms)

High load Slow replica
Geo-

distributed

0

10

25

50

75

st
ro

ng

la
te

nc
y:
 5

0m
s

la
te

nc
y:
 1

0m
s

w
ea

k

st
ro

ng

la
te

nc
y:
 5

0m
s

la
te

nc
y:
 1

0m
s

w
ea

k

st
ro

ng

la
te

nc
y:
 5

0m
s

la
te

nc
y:
 1

0m
s

w
ea

k

st
ro

ng

la
te

nc
y:
 5

0m
s

la
te

nc
y:
 1

0m
s

w
ea

k

M
e
a
n
 l
a
te

n
c
y
 (

m
s
)

Figure 5. Counter: latency bounds, mean latency. Beneath each
bar is the % of strong reads. Strong consistency is never possi-
ble for the 10ms bound, but 50ms bound achieves mostly strong,
only resorting to weak when network latency is high.

counters from a single multithreaded client (allowing up
to 4000 concurrent operations).
6.2.1. Latency bounds
Latency bounds provide predictable performance while
maximizing consistency. We found that when latencies
and load are low it is often possible to achieve strong
consistency. Figure 5 shows the average operation latency
with strong and weak consistency, as well with both 10ms
and 50ms latency bounds.

As expected, there is a significant cost to strong con-
sistency under all network conditions. IPA cannot achieve
strong consistency under 10ms in any case, so the system
must always default to weak consistency. With a 50ms
bound, IPA can achieve strong consistency in conditions
when network latency is low (i.e., the single datacenter
case). Cassandra assigns each client to read at a different
replica for load balancing, so, with one slow replica, IPA
will attempt to achieve strong consistency for all clients
but not succeed. In our experiments, IPA was able to get
strong consistency 83% of the time. Finally, with our geo-
distributed environment, there are no 2 replicas within
50ms of our client, so strong consistency is never possible
within our bounds; as a result, IPA adapts to only attempt
weak in both cases.

8

Uniform
(5ms)

High load Slow replica
Geo-

distributed

0

5

10

15

20

0

5

10

15

20

0

20

40

60

0

200

400

600

800

st
ro

ng

er
ro

r:
1%

er
ro

r:
5%

er
ro

r:
10

%
w
ea

k

st
ro

ng

er
ro

r:
1%

er
ro

r:
5%

er
ro

r:
10

%
w
ea

k

st
ro

ng

er
ro

r:
1%

er
ro

r:
5%

er
ro

r:
10

%
w
ea

k

st
ro

ng

er
ro

r:
1%

er
ro

r:
5%

er
ro

r:
10

%
w
ea

k

O
v
e

ra
ll

m
e

a
n

 l
a

te
n

c
y
 (

m
s
)

(a) Mean latency (increment and read).

Local High load Slow replica
Geo-

distributed

0.00

0.25

0.50

0.75

1.00

0

20

40

m
e

a
n

 %
 e

rr
o

r
m

a
x

 %
 e

rr
o

r

0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1

fraction increment ops

Bounds strong error: 1% weak

(b) Observed % error for weak and strong, compared with the
actual interval widths returned for 1% error tolerance.

Figure 6. Counter benchmark: error tolerance. In (a), we see that wider error bounds reduce mean latency because fewer synchro-
nizations are required, matching weak around 5-10%. In (b), we see actual error of weak compared with the actual interval for a 1%
error bound with varying fraction of writes; average error is less than 1% but maximum error can be extremely high: up to 60%.

(2162 ms)

Uniform
(5ms)

High load Slow replica
Geo-

distributed

0
10

50

100

150

st
ro

ng

la
te

nc
y:
 5

0m
s

la
te

nc
y:
 1

0m
s

w
ea

k

st
ro

ng

la
te

nc
y:
 5

0m
s

la
te

nc
y:
 1

0m
s

w
ea

k

st
ro

ng

la
te

nc
y:
 5

0m
s

la
te

nc
y:
 1

0m
s

w
ea

k

st
ro

ng

la
te

nc
y:
 5

0m
s

la
te

nc
y:
 1

0m
s

w
ea

k

9
5
th

 p
e
rc

e
n
ti
le

 l
a
te

n
c
y

Figure 7. Counter: 95th percentile latency. Latency bounds keep
tail latency down, backing off to weak when necessary.

Figure 7 shows the 95th percentile latencies for the
same workload. The tail latency of the 10ms bound is
comparable to weak consistency, whereas the 50ms bound
overloads the slow server with double the requests, caus-
ing it to exceed the latency 5% of the time. There is a
gap between latency-bound and weak consistency in the
geo-distributed case because the weak condition uses weak
reads and writes, while our rushed types, in order to have
the option of getting strong reads without requiring a read
of ALL, must do QUORUM writes.

Note that, without consistency types, it would be chal-
lenging for programmers to handle the varying consis-
tency of returned values in changing network conditions.
However, IPA’s type system not only gives programmers
the tools to reason about different consistency levels, it en-
forces consistency safety.
6.2.2. Error bounds
This experiment measures the cost of enforcing error
bounds using the reservation system described in §4.2,
and its precision. Reservations move synchronization off
the critical path: by distributing write permissions among
replicas, reads can get strong guarantees from a single

replica. Note that reservations impact write performance,
so we must consider both in our experiments.

Figure 6a shows latencies for error bounds of 1%, 5%,
and 10%, plotting the average of read and increment oper-
ations. As expected, tighter error bounds increase latency
because it forces more frequent synchronization between
replicas. The 1% error bound provides most of the bene-
fit, except in the slow replica and geo-distributed environ-
ments where it forces synchronization frequently enough
that the added latency slows down the system. 5-10% error
bounds provide latency comparable to weak consistency.
In the geo-distributed case, the coordination required for
reservations makes even the 10% error bound 4× slower
than weak consistency, but this is still 28× faster than
strong consistency.

While we have verified that error-bounded reads remain
within our defined bounds, we also wish to know what
error occurs in practice. We modified our benchmark to
observe the actual error from weak consistency by incre-
menting counters a predetermined amount and reading the
value; results are shown in Figure 6b. We plot the percent
error of weak and strong against the actual observed inter-
val width for a 1% error bound, going from a read-heavy
(1% increments) to write-heavy (all increments, except to
check the value).

First, we find that the mean interval is less than the 1%
error bound because, for counters that are less popular, IPA
is able to return a more precise interval. At low write rate,
this interval becomes even smaller, down to .5% in the geo-
distributed experiment. Next, we find that the mean error
with weak consistency is also much less than 1%; how-
ever the maximum error that we observed is up to 60%
of the actual value. This result motivates the need for er-
ror bounded consistency to ensure that applications do not
see drastically incorrect values from weakly consistent op-
erations. Further, using the Interval type, IPA is able to

9

// creates a table of pools, so each event gets its own

// 5% error tolerance on `remaining` method, weak otherwise

val tickets = UUIDPool() with Consistency(Weak)

 with Remaining(ErrorTolerance(0.05))

// called from displayEvent (& purchaseTicket)

def getTicketCount(event: UUID): Interval[Int] =

 tickets(event).remaining()

def purchaseTicket(event: UUID) = {

 // UUIDPool is safe even with weak consistency (CRDT)

 endorse(tickets(event).take()) match {

 case Some(ticket) =>

 // imprecise count returned due to error tolerance

 val remaining = getTicketCount(event)

 // use maximum count possible to be fair

 val price = computePrice(remaining.max)

 display("Ticket reserved. Price: $" + price)

 prompt_for_payment_info(price)

 case None =>

 display("Sorry, all sold out.")

 }

}

Figure 8. Ticket service code demonstrating consistency types.

give the application an estimate of the variance in the weak
read, which is often more precise than the upper bound set
by the error tolerance policy.
6.3. Applications
Next, we explore the implementation of two applications
in IPA and compare their performance against Cassandra
using purely strong or weak consistency on our simulated
network testbed and Google Compute Engine.
6.3.1. Ticket service
Our Ticket sales web service, introduced in §2, is modeled
after FusionTicket [1], which has been used as a bench-
mark in recent distributed systems research [65, 66]. We
support the following actions:
• browse: List events by venue
• viewEvent: View the full description of an event in-

cluding number of remaining tickets
• purchase: Purchase a ticket (or multiple)
• addEvent: Add an event at a venue.

Figure 8 shows a snippet of code from the IPA implemen-
tation which can be compared with the non-IPA version
from Figure 1. Tickets are modeled using the UUIDPool
type, which generates unique identifiers to reserve tickets
for purchase. The ADT ensures that, even with weak con-
sistency, it never gives out more than the maximum num-
ber of tickets, so it is safe to endorse the result of the take
operation as long as one is okay with the possibility of a
false negative. Rather than just using a weak read as in the
original example, in IPA we can bound the inconsistency
of the remaining ticket count using an error tolerance an-
notation on the tickets pool. Now to compute the price of
the reserved ticket, we call getTicketCount and get an
Interval, forcing us to decide how to handle the range
of possible ticket counts. We decide to use the max value
from the interval to be fair to users; the 5% error bound
ensures that we don’t sacrifice too much profit this way.

Uniform
(5ms)

High load Slow replica
Geo-

distributed
GCE

(actual)

10

20

10

20

50

100

10

20

50

100

10

20

50

100

500

1000

10

20

50

100

500

1000

st
ro

ng

er
ro

r:
5%

la
te

nc
y:
 2

0m
s

w
ea

k

st
ro

ng

er
ro

r:
5%

la
te

nc
y:
 2

0m
s

w
ea

k

st
ro

ng

er
ro

r:
5%

la
te

nc
y:
 2

0m
s

w
ea

k

st
ro

ng

er
ro

r:
5%

la
te

nc
y:
 2

0m
s

w
ea

k

st
ro

ng

er
ro

r:
5%

la
te

nc
y:
 2

0m
s

w
ea

k

M
e

a
n

 l
a

te
n

c
y
 (

m
s
)

Figure 9. Ticket service: mean latency, log scale. Strong consis-
tency is far too expensive (>10× slower) except when load and
latencies are low, but 5% error tolerance allows latency to be
comparable to weak consistency. The 20ms latency-bound vari-
ant is either slower or defaults to weak, providing little benefit.
Note: the ticket Pool is safe even when weakly consistent.

0k

1k

2k

3k

0 1000 2000 3000 4000

concurrent clients

T
h

ro
u

g
h

p
u

t
(a

c
ti
o

n
s
/s

)

Bounds

strong

error: 5%

latency: 20ms

weak

Figure 10. Ticket service: throughput on Google Compute En-
gine globally-distributed testbed. Note that this counts actions
such as tweet, which can consist of multiple storage operations.
Because error tolerance does mostly weak reads and writes, its
performance tracks weak. Latency bounds reduce throughput due
to issuing the same operation in parallel.

To evaluate the performance, we run a workload mod-
elling a typical small-scale deployment: 50 venues and
200 events, with an average of 2000 tickets each (gaussian
distribution centered at 2000, stddev 500); this ticket-to-
event ratio ensures that some events run out tickets. Be-
cause real-world workloads exhibit power law distribu-
tions [20], we use a moderately skewed Zipf distribution
with coefficient of 0.6 to select events.

Figure 9 shows the average latency of a workload con-
sisting of 70% viewEvent, 19% browse, 10% purchase,
and 1% addEvent. We plot with a log scale because strong
consistency has over 5× higher latency. The purchase
event, though only 10% of the workload, drives most of
the latency increase because of the work required to pre-
vent over-selling tickets. We explore two different IPA im-
plementations: one with a 20ms latency bound on all ADTs
aiming to ensure that both viewEvent and browse com-
plete quickly, and one where the ticket pool size (“tickets
remaining”) has a 5% error bound. We see that both per-
form with nearly the same latency as weak consistency.
With the low-latency condition (uniform and high load),
20ms bound does 92% strong reads, 4% for slow replica,

10

class User(id: UserID, name: String,

 followers: Set[UserID] with LatencyBound(20 ms),

 timeline: List[TweetID] with LatencyBound(20 ms))

class Tweet(id: TweetID, user: UserID, text: String,

 retweets: Set[UserID] with Size(ErrorTolerance(5%)))

def viewTimeline(user: User) = {

 // `range` returns `Rushed[List[TweetID]]`

 user.timeline.range(0,10) match { // use match to unpack

 case Consistent(tweets) =>

 for (tweetID <- tweets)

 displayTweet(tweetID)

 case Inconsistent(tweets) =>

 // tweets may not have fully propagated yet

 for (tweetID <- tweets)

 // guard load and retry if there's an error

 Try { displayTweet(tweetID) } retryOnError

 }

}

def displayTweet(id: TweetID, user: User) = {

 val rct: Interval[Int] = tweets(id).retweets.size()

 if (rct > 1000) // abbreviate large counts (e.g. "2k")

 display("${rct.min/1000}k retweets")

 else if (rct.min == rct.max) // count is precise!

 display("Exactly ${rct.min} retweets")

 //...

 // here, `contains` returns `Consistent[Boolean]`

 // so it is automatically coerced to a Boolean

 if (tweets(id).retweets.contains(user))

 disable_retweet_button()

}

Figure 11. Twitter data model with policy annotations,
Rushed[T] helps catch referential integrity violations and
Interval[T] represents approximate retweet counts.
and all weak on both geo-distributed conditions.

Figure 9 also shows results on Google Compute Engine
(GCE). We see that the results of real geo-replication vali-
date the findings of our simulated geo-distribution results.

On this workload, we observe that the 5% error bound
performs well even under adverse conditions, which dif-
fers from our findings in the microbenchmark. This is be-
cause ticket UUIDPools begin full, with many tokens avail-
able, requiring less synchronization until they are close
to running out. Contrast this with the microbenchmark,
where counters started at small numbers (average of 500),
where a 5% error tolerance means fewer tokens.
6.3.2. Twitter clone
Our second application is a Twitter-like service based on
the Redis data modeling example, Retwis [55]. The data
model is simple: each user has a Set of followers, and a
List of tweets in their timeline. When a user tweets, the
tweet ID is eagerly inserted into all of their followers’ time-
lines. Retweets are tracked with a Set of users who have
retweeted each tweet.

Figure 11 shows the data model with policy annota-
tions: latency bounds on followers and timelines and an
error bound on the retweets. This ensures that when tweets
are displayed, the retweet count is not grossly inaccurate.
As shown in displayTweet, highly popular tweets with
many retweets can tolerate approximate counts – they ac-
tually abbreviate the retweet count (e.g. “2.4M”) – but

Local
Uniform

(5ms)
High load

Slow
replica

Geo-
distributed

GCE
(actual)

0

20

40

60

0

25

50

75

100

0

100

200

300

400

0

250

500

750

0

1000

2000

3000

4000

0

2000

4000

6000

st
ro

ng IP
A

w
ea

k

st
ro

ng IP
A

w
ea

k

st
ro

ng IP
A

w
ea

k

st
ro

ng IP
A

w
ea

k

st
ro

ng IP
A

w
ea

k

st
ro

ng IP
A

w
ea

k

M
e
a
n
 l
a
te

n
c
y
 (

m
s
)

Figure 12. Twitter clone: mean latency (all actions). The IPA
version performance comparably with weak consistency in all
but one case, while strong consistency is 2-10× slower.

average tweets, with less than 20 retweets, will get an
exact count. This is important because for regular peo-
ple, they will notice if a friend’s retweet is not reflected
in the count, whereas Ellen Degeneres’s record-breaking
celebrity selfie, which nearly brought down Twitter in
2014 [7], can scale because a 5% error tolerance on 3.4
million retweets provides significant slack.

The code for viewTimeline in Figure 11 demonstrates
how latency-bound Rushed[T] types can be destructured
with a match statement. In this case, the timeline (list of
tweet IDs) is retrieved with a latency bound. Tweet con-
tent is added to the store before tweet IDs are pushed onto
timelines, so with strong consistency we know that the
list of IDs will all be able to load valid tweets. However,
if the latency-bound type returns with weak consistency
(Inconsistent case), then this referential integrity prop-
erty may not hold. In that case, we must guard the call to
displayTweet and retry if any of the operations fails (e.g.,
if the retweet set wasn’t created yet).

We simulate a realistic workload by generating a syn-
thetic power-law graph, using a Zipf distribution to deter-
mine the number of followers per user. Our workload is a
random mix with 50% timeline reads, 14% tweet, 30%
retweet, 5% follow, and 1% newUser.

We see in Figure 12 that for all but the local (same rack)
case, strong consistency is over 3× slower. Our imple-
mentation, combining latency and error-bounds, performs
comparably with weak consistency but with stronger guar-
antees for the programmer. Our simulated geo-distributed
condition turns out to be the worst scenario for IPA’s Twit-
ter, with latency over 2× slower than weak consistency.
This is because weak consistency performed noticeably
better on our simulated network, which had one very close
(1ms latency) replica that it used almost exclusively.
7. Related Work
Consistency models. IPA’s consistency types could be ex-
tended to more of the thriving ecosystem of consistency
models from sequential consistency [33] and linearizabil-
ity [30], to eventual consistency [64]. A variety of interme-

11

diate models fit elsewhere in the spectrum, each making
different trade-offs balancing performance against ease
of programming. Session guarantees, including read-your-
writes, strengthen ordering for individual clients but re-
duce availability [60]. Many datastores allow fine-grained
consistency control: Cassandra [4] per operation, Riak
[11] on an object granularity, and others [34, 58]. The
Conit consistency model [67] breaks down the consistency
spectrum into numerical error, order error, and staleness,
but requires annotating each operation and explicit depen-
dency tracking, rather than annotating ADTs.

Higher-level consistency requirements. Rather than
enforcing consistency safety, some programming models
allow users to express application correctness criteria di-
rectly. In Quelea [57], programmers write contracts to de-
scribe visibility and ordering constraints, independent of
any particular consistency hierarchy, then the system se-
lects the consistency level necessary for each operation.
In Indigo [9], programmers write invariants over abstract
state and annotate post-conditions on actions in terms
of the abstract state. The system analyzes annotated pro-
grams and adds coordination logic to prevent invariant vio-
lations, using a reservation system to enforce numeric con-
straints. Neither Indigo nor Quelea, however, allow pro-
grammers to specify approximations or error tolerances,
nor do they enforce any kind of performance bounds.

IPA’s latency-bound policies were inspired by the
consistency-based SLAs of Pileus [61]. Consistency SLAs
specify a target latency and consistency level (e.g. 100
ms with read-my-writes), associated with a utility. Each
operation specifies a set of SLAs, and the system pre-
dicts which is most likely to be met, attempting to max-
imize utility, and returns both the value and the achieved
consistency level. Other systems, including PRACTI [12],
PADS [13], and WheelFS [59], have given developers
ways of expressing their desired performance and correct-
ness requirements through semantic cues and policies.

A long history of systems have been built around
the principle that applications may be willing to toler-
ate slightly stale data in exchange for improved perfor-
mance, including databases [14, 46, 49, 51] and distributed
caches [43, 47]. These systems generally require develop-
ers to explicitly specify staleness bounds on each trans-
action in terms of absolute time (although Bernstein et
al.’s model can generate these from error bounds when a
value’s maximum rate of change is known).

The above techniques are relevant but largely orthog-
onal to our work: they provide techniques which could
be used in an IPA datastore to trade off correctness in
new ways. This work builds on those insights, introduc-
ing a new error tolerance mechanism, proposing ADT an-
notations rather than per-operation, but most importantly,
providing consistency safety via consistency types, which
ensure that all possible cases are handled whenever the

system adjusts consistency to meet performance targets.
Previous systems gave some feedback to programs about
achieved consistency, but did not provide facilities to en-
sure and help developers use the information correctly.

Types for approximation. IPA’s type system is in-
spired by work on approximate computing, in which com-
putations can be selectively made inaccurate to improve
energy efficiency and performance. EnerJ [16, 53] and
Rely [19, 39] track the flow of approximate values to
prevent them from interfering with precise computation.
IPA’s interval types are similar to Uncertain<T>’s proba-
bility distributions [15] and to interval analysis [40]. One
key difference for IPA is that inconsistent values can be
strengthened if desired with additional synchronization.

Types for distributed and secure systems. Conver-
gent (or conflict-free) replicated data types (CRDTs) [56]
are data types designed for eventual consistency. Simi-
lar to how IPA types express weakened semantics which
allow for implementation on weak consistency, CRDTs
guarantee that they will converge on eventual consistency
by forcing all update operations to commute. CRDTs can
be useful because they allow concurrent updates with
meaningful semantics, but they are still only eventually
(or causally) consistent, so users must still deal with tem-
porary divergence and out-of-date reads, and they do not
incorporate performance bounds or variable accuracy. Par-
ticularly relevant to IPA, the Bounded Counter CRDT [10]
enforces hard limits on the global value of a counter in a
way similar to reservations but less general; this design
informed our own reservations system for error bounds.
Information flow tracking systems [23, 41, 52], also use
static type checking and dynamic analysis to enforce non-
interference between sensitive data and untrusted chan-
nels, but, to the best of our knowledge, those techniques
have not been applied to enforce consistency safety by sep-
arating weakly and strongly consistent data.

8. Conclusion
The IPA programming model provides programmers with
disciplined ways to trade consistency for performance
in distributed applications. By specifying application-
specific performance and accuracy targets in the form of la-
tency and error tolerance bounds, they tell the system how
to adapt when conditions change and provide it with oppor-
tunities for optimization. Meanwhile, consistency types
ensure consistency safety, ensuring that all potential weak
outcomes are handled, and allowing applications to make
choices based on the accuracy of the values the system
returns. The policies, types and enforcement systems im-
plemented in this work are only a sampling of the full
range of possibilities within the framework of Inconsistent,
Performance-bound, and Approximate types.

12

References
[1] Fusion ticket. http://fusionticket.org.
[2] Scala in the enterprise. http://www.scala-lang.

org/old/node/1658, March 2009.
[3] Amazon Web Services, Inc. Elastic compute cloud

(ec2) cloud server & hosting – aws. https://aws.
amazon.com/ec2/, 2016 .

[4] Apache Software Foundation. Cassandra. http://
cassandra.apache.org/, 2015.

[5] Apache Software Foundation. Apache spark -
lightning-fast cluster computing. http://spark.
apache.org/, 2016a.

[6] Apache Software Foundation. Apache thrift.
https://thrift.apache.org/, 2016b.

[7] Lisa Baertlein. Ellen’s Oscar ’selfie’ crashes
Twitter, breaks record. http://www.reuters.
com/article/2014/03/03/us-oscars-selfie-
idUSBREA220C320140303, March 2014.

[8] Peter Bailis, Ali Ghodsi, Joseph M. Hellerstein,
and Ion Stoica. Bolt-on causal consistency.
In Proceedings of the 2013 ACM SIGMOD In-
ternational Conference on Management of Data,
SIGMOD ’13, pages 761–772, New York, NY,
USA, 2013. ACM. ISBN 978-1-4503-2037-5.
doi:10.1145/2463676.2465279.

[9] Valter Balegas, Sérgio Duarte, Carla Ferreira, Ro-
drigo Rodrigues, Nuno Preguiça, Mahsa Najafzadeh,
and Marc Shapiro. Putting consistency back
into eventual consistency. In Proceedings of
the Tenth European Conference on Computer Sys-
tems, EuroSys, pages 6:1–6:16, New York, NY,
USA, 2015a. ACM. ISBN 978-1-4503-3238-5.
doi:10.1145/2741948.2741972.

[10] Valter Balegas, Diogo Serra, Sergio Duarte, Carla
Ferreira, Marc Shapiro, Rodrigo Rodrigues, and
Nuno Preguiça. Extending eventually consistent
cloud databases for enforcing numeric invariants.
34th International Symposium on Reliable Dis-
tributed Systems (SRDS 2015), September 2015b.

[11] Basho Technologies, Inc. Riak. http://docs.
basho.com/riak/latest/, 2015.

[12] Nalini Belaramani, Mike Dahlin, Lei Gao, Amol
Nayate, Arun Venkataramani, Praveen Yalagandula,
and Jiandan Zheng. Practi replication. In Proceed-
ings of the 3rd Conference on Networked Systems De-
sign & Implementation - Volume 3, NSDI’06, pages

5–5, Berkeley, CA, USA, 2006. USENIX Associ-
ation. URL http://dl.acm.org/citation.cfm?
id=1267680.1267685.

[13] Nalini Belaramani, Jiandan Zheng, Amol Nayate,
Robert Soulé, Mike Dahlin, and Robert Grimm.
Pads: A policy architecture for distributed storage
systems. In Proceedings of the 6th USENIX Sympo-
sium on Networked Systems Design and Implemen-
tation, NSDI’09, pages 59–73, Berkeley, CA, USA,
2009. USENIX Association. URL http://dl.acm.
org/citation.cfm?id=1558977.1558982.

[14] Philip A. Bernstein, Alan Fekete, Hongfei Guo,
Raghu Ramakrishnan, and Pradeep Tamma. Relaxed
currency serializability for middle-tier caching and
replication. In Proceedings of the 2006 ACM SIG-
MOD International Conference on Management of
Data, Chicago, IL, USA, June 2006. ACM.

[15] James Bornholt, Todd Mytkowicz, and Kathryn S.
McKinley. Uncertain<T>: A First-Order Type
for Uncertain Data. In Proceedings of the
19th International Conference on Architectural
Support for Programming Languages and Oper-
ating Systems - ASPLOS 14, ASPLOS. Associ-
ation for Computing Machinery (ACM), 2014.
doi:10.1145/2541940.2541958.

[16] Brett Boston, Adrian Sampson, Dan Grossman, and
Luis Ceze. Probability type inference for flexible
approximate programming. In Proceedings of the
2015 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2015, pages 470–487,
2015. doi:10.1145/2814270.2814301.

[17] Eric A. Brewer. Towards robust distributed sys-
tems. In Keynote at PODC (ACM Symposium
on Principles of Distributed Computing). Asso-
ciation for Computing Machinery (ACM), 2000.
doi:10.1145/343477.343502.

[18] Travis Brown. Scala at scale at Twitter (talk).
http://conferences.oreilly.com/oscon/open-
source-2015/public/schedule/detail/42332,
July 2015.

[19] Michael Carbin, Sasa Misailovic, and Martin C. Ri-
nard. Verifying quantitative reliability for programs
that execute on unreliable hardware. In Proceedings
of the 2013 ACM SIGPLAN International Confer-
ence on Object Oriented Programming Systems Lan-
guages & Applications, OOPSLA 2013, pages 33–52,
2013. doi:10.1145/2509136.2509546.

13

http://fusionticket.org
http://www.scala-lang.org/old/node/1658
http://www.scala-lang.org/old/node/1658
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
http://cassandra.apache.org/
http://cassandra.apache.org/
http://spark.apache.org/
http://spark.apache.org/
https://thrift.apache.org/
http://www.reuters.com/article/2014/03/03/us-oscars-selfie-idUSBREA220C320140303
http://www.reuters.com/article/2014/03/03/us-oscars-selfie-idUSBREA220C320140303
http://www.reuters.com/article/2014/03/03/us-oscars-selfie-idUSBREA220C320140303
http://dx.doi.org/10.1145/2463676.2465279
http://dx.doi.org/10.1145/2741948.2741972
http://docs.basho.com/riak/latest/
http://docs.basho.com/riak/latest/
http://dl.acm.org/citation.cfm?id=1267680.1267685
http://dl.acm.org/citation.cfm?id=1267680.1267685
http://dl.acm.org/citation.cfm?id=1558977.1558982
http://dl.acm.org/citation.cfm?id=1558977.1558982
http://dx.doi.org/10.1145/2541940.2541958
http://dx.doi.org/10.1145/2814270.2814301
http://dx.doi.org/10.1145/343477.343502
http://conferences.oreilly.com/oscon/open-source-2015/public/schedule/detail/42332
http://conferences.oreilly.com/oscon/open-source-2015/public/schedule/detail/42332
http://dx.doi.org/10.1145/2509136.2509546

[20] Brian F. Cooper, Adam Silberstein, Erwin Tam,
Raghu Ramakrishnan, and Russell Sears. Bench-
marking cloud serving systems with YCSB.
In Proceedings of the 1st ACM symposium
on Cloud computing - SoCC 10. Associa-
tion for Computing Machinery (ACM), 2010.
doi:10.1145/1807128.1807152.

[21] Hayley C. Cuccinello. ’star wars’ presales crash
ticketing sites, set record for fandango. http://www.
forbes.com/sites/hayleycuccinello/2015/
10/20/star-wars-presales-crash-ticketing-
sites-sets-record-for-fandango/, October
2015.

[22] Datastax, Inc. How are consistent read and write
operations handled? http://docs.datastax.
com/en/cassandra/3.x/cassandra/dml/
dmlAboutDataConsistency.html, 2016.

[23] Dorothy E. Denning and Peter J. Denning. Certifica-
tion of programs for secure information flow. Com-
munications of the ACM, 20 (7): 504–513, July 1977.

[24] Docker, Inc. Docker. https://www.docker.com/,
2016.

[25] Robert Escriva, Bernard Wong, and Emin Gün
Sirer. HyperDex. In Proceedings of the
ACM SIGCOMM Conference. Association for
Computing Machinery (ACM), August 2012.
doi:10.1145/2342356.2342360.

[26] Brady Forrest. Bing and google agree: Slow pages
lose users. Radar, June 2009. http://radar.
oreilly.com/2009/06/bing-and-google-agree-
slow-pag.html.

[27] Dieter Gawlick and David Kinkade. Varieties of
Concurrency Control in IMS/VS Fast Path. IEEE
Database Engineering Bulletin, 8 (2): 3–10, 1985.

[28] Google, Inc. Compute engine — google cloud
platform. https://cloud.google.com/compute/,
2016.

[29] Susan Hall. Employers can’t find enough scala
talent. http://insights.dice.com/2014/04/04/
employers-cant-find-enough-scala-talent/,
March 2014.

[30] Maurice P. Herlihy and Jeannette M. Wing. Lin-
earizability: a correctness condition for concurrent
objects. ACM Transactions on Programming Lan-
guages and Systems, 12 (3): 463–492, July 1990.
doi:10.1145/78969.78972.

[31] Hyperdex. Hyperdex. http://hyperdex.org/,
2015.

[32] Avinash Lakshman and Prashant Malik. Cassandra:
A decentralized structured storage system. SIGOPS
Oper. Syst. Rev., 44 (2): 35–40, April 2010. ISSN
0163-5980. doi:10.1145/1773912.1773922.

[33] Lamport. How to make a multiprocessor computer
that correctly executes multiprocess programs. IEEE
Transactions on Computers, C-28 (9): 690–691,
September 1979. doi:10.1109/tc.1979.1675439.

[34] Cheng Li, Daniel Porto, Allen Clement, Johannes
Gehrke, Nuno Preguiça, and Rodrigo Rodrigues.
Making geo-replicated systems fast as possible,
consistent when necessary. In Presented as part of
the 10th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 12), pages
265–278, Hollywood, CA, 2012. USENIX. ISBN
978-1-931971-96-6. URL https://www.usenix.
org/conference/osdi12/technical-sessions/
presentation/li.

[35] Lightbend Inc. Akka. http://akka.io/, 2016.

[36] Greg Linden. Make data useful. Talk, November
2006. http://glinden.blogspot.com/2006/12/
slides-from-my-talk-at-stanford.html.

[37] Jed Liu, Tom Magrino, Owen Arden, Michael D.
George, and Andrew C. Myers. Warranties for
faster strong consistency. In USENIX Symposium
on Networked Systems Design and Implementation
(NSDI’14), pages 503–517, Seattle, WA, April 2014.
USENIX Association. ISBN 978-1-931971-09-6.
URL https://www.usenix.org/conference/
nsdi14/technical-sessions/presentation/
liu_jed.

[38] Cade Metz. How Instagram Solved Its Justin Bieber
Problem, November 2015. URL http://www.
wired.com/2015/11/how-instagram-solved-
its-justin-bieber-problem/.

[39] Sasa Misailovic, Michael Carbin, Sara Achour,
Zichao Qi, and Martin C. Rinard. Chisel: reliability-
and accuracy-aware optimization of approximate
computational kernels. In Proceedings of the
2014 ACM International Conference on Object
Oriented Programming Systems Languages & Ap-
plications, OOPSLA 2014, pages 309–328, 2014.
doi:10.1145/2660193.2660231.

[40] Ramon E. Moore. Interval analysis. Prentice-Hall,
1966.

14

http://dx.doi.org/10.1145/1807128.1807152
http://www.forbes.com/sites/hayleycuccinello/2015/10/20/star-wars-presales-crash-ticketing-sites-sets-record-for-fandango/
http://www.forbes.com/sites/hayleycuccinello/2015/10/20/star-wars-presales-crash-ticketing-sites-sets-record-for-fandango/
http://www.forbes.com/sites/hayleycuccinello/2015/10/20/star-wars-presales-crash-ticketing-sites-sets-record-for-fandango/
http://www.forbes.com/sites/hayleycuccinello/2015/10/20/star-wars-presales-crash-ticketing-sites-sets-record-for-fandango/
http://docs.datastax.com/en/cassandra/3.x/cassandra/dml/dmlAboutDataConsistency.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/dml/dmlAboutDataConsistency.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/dml/dmlAboutDataConsistency.html
https://www.docker.com/
http://dx.doi.org/10.1145/2342356.2342360
http://radar.oreilly.com/2009/06/bing-and-google-agree-slow-pag.html
http://radar.oreilly.com/2009/06/bing-and-google-agree-slow-pag.html
http://radar.oreilly.com/2009/06/bing-and-google-agree-slow-pag.html
https://cloud.google.com/compute/
http://insights.dice.com/2014/04/04/employers-cant-find-enough-scala-talent/
http://insights.dice.com/2014/04/04/employers-cant-find-enough-scala-talent/
http://dx.doi.org/10.1145/78969.78972
http://hyperdex.org/
http://dx.doi.org/10.1145/1773912.1773922
http://dx.doi.org/10.1109/tc.1979.1675439
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/li
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/li
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/li
http://akka.io/
http://glinden.blogspot.com/2006/12/slides-from-my-talk-at-stanford.html
http://glinden.blogspot.com/2006/12/slides-from-my-talk-at-stanford.html
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/liu_jed
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/liu_jed
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/liu_jed
http://www.wired.com/2015/11/how-instagram-solved-its-justin-bieber-problem/
http://www.wired.com/2015/11/how-instagram-solved-its-justin-bieber-problem/
http://www.wired.com/2015/11/how-instagram-solved-its-justin-bieber-problem/
http://dx.doi.org/10.1145/2660193.2660231

[41] Andrew C. Myers. Jflow: Practical mostly-static in-
formation flow control. In Proceedings of the 26th
ACM Symposium on Principles of Programing Lan-
guages (POPL ’99), San Antonio, TX, USA, January
1999. ACM.

[42] Dao Nguyen. What it’s like to work on buz-
zfeed’s tech team during record traffic. http://
www.buzzfeed.com/daozers/what-its-like-to-
work-on-buzzfeeds-tech-team-during-record-
t, February 2015.

[43] Chris Olston, Boon Thau Loo, and Jennifer Widom.
Adaptive precision setting for cached approximate
values. In Proceedings of the 1999 ACM SIGMOD
International Conference on Management of Data,
Santa Barbara, CA, USA, May 1999. ACM.

[44] Patrick E. O’Neil. The escrow transactional method.
ACM Transactions on Database Systems, 11 (4):
405–430, December 1986. doi:10.1145/7239.7265.

[45] outworkers ltd. Phantom by outworkers. http://
outworkers.github.io/phantom/, March 2016.

[46] Christian Plattner and Gustavo Alonso. Ganymed:
Scalable replication for transactional web applica-
tions. In Proceedings of the International Middle-
ware Conference, Toronto, Ontario, Canada, October
2004.

[47] Dan R. K. Ports, Austin T. Clements, Irene Zhang,
Samuel Madden, and Barbara Liskov. Transactional
consistency and automatic management in an appli-
cation data cache. In Proceedings of the 9th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI ’10), Vancouver, BC, Canada, Oc-
tober 2010. USENIX.

[48] Nuno Preguiça, J. Legatheaux Martins, Miguel
Cunha, and Henrique Domingos. Reservations for
conflict avoidance in a mobile database system. In
Proceedings of the 1st international conference on
Mobile systems, applications and services - MobiSys
03, MobiSys. Association for Computing Machinery
(ACM), 2003. doi:10.1145/1066116.1189038.

[49] Calton Pu and Avraham Leff. Replica control in dis-
tributed systems: An asynchronous approach. In Pro-
ceedings of the 1991 ACM SIGMOD International
Conference on Management of Data, Denver, CO,
USA, May 1991. ACM.

[50] Andreas Reuter. Concurrency on high-traffic data
elements. ACM, New York, New York, USA, March
1982.

[51] Uwe Röhm, Klemens Böhm, Hans-Jörg Schek, and
Heiko Schuldt. FAS — a freshness-sensitive coor-
dination middleware for a cluster of OLAP compo-
nents. In Proceedings of the 28th International Con-
ference on Very Large Data Bases (VLDB ’02), Hong
Kong, China, August 2002.

[52] Andrei Sabelfeld and Andrew C. Myers. Language-
based information-flow security. IEEE Journal on
Selected Areas in Communications, 21 (1): 1–15,
January 2003.

[53] Adrian Sampson, Werner Dietl, Emily Fortuna,
Danushen Gnanapragasam, Luis Ceze, and Dan
Grossman. Enerj: approximate data types for
safe and general low-power computation. In
Proceedings of the 32nd ACM SIGPLAN Confer-
ence on Programming Language Design and Im-
plementation, PLDI 2011, pages 164–174, 2011.
doi:10.1145/1993498.1993518.

[54] Salvatore Sanfilippo. Redis. http://redis.io/,
2015a.

[55] Salvatore Sanfilippo. Design and implementation of
a simple Twitter clone using PHP and the Redis key-
value store. http://redis.io/topics/twitter-
clone, 2015b.

[56] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and
Marek Zawirski. Conflict-free Replicated Data
Types. In Proceedings of the 13th International Con-
ference on Stabilization, Safety, and Security of Dis-
tributed Systems, SSS, pages 386–400, 2011. ISBN
978-3-642-24549-7.

[57] KC Sivaramakrishnan, Gowtham Kaki, and Suresh
Jagannathan. Declarative programming over even-
tually consistent data stores. In Proceedings of
the 36th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation - PLDI
2015, PLDI. Association for Computing Machinery
(ACM), 2015. doi:10.1145/2737924.2737981.

[58] Yair Sovran, Russell Power, Marcos K. Aguilera,
and Jinyang Li. Transactional storage for geo-
replicated systems. In ACM Symposium on Op-
erating Systems Principles - SOSP’11, SOSP. As-
sociation for Computing Machinery (ACM), 2011.
doi:10.1145/2043556.2043592.

[59] Jeremy Stribling, Yair Sovran, Irene Zhang, Xavid
Pretzer, Jinyang Li, M. Frans Kaashoek, and Robert
Morris. Flexible, wide-area storage for distributed
systems with WheelFS. In Proceedings of the 6th
USENIX Symposium on Networked Systems Design

15

http://www.buzzfeed.com/daozers/what-its-like-to-work-on-buzzfeeds-tech-team-during-record-t
http://www.buzzfeed.com/daozers/what-its-like-to-work-on-buzzfeeds-tech-team-during-record-t
http://www.buzzfeed.com/daozers/what-its-like-to-work-on-buzzfeeds-tech-team-during-record-t
http://www.buzzfeed.com/daozers/what-its-like-to-work-on-buzzfeeds-tech-team-during-record-t
http://dx.doi.org/10.1145/7239.7265
http://outworkers.github.io/phantom/
http://outworkers.github.io/phantom/
http://dx.doi.org/10.1145/1066116.1189038
http://dx.doi.org/10.1145/1993498.1993518
http://redis.io/
http://redis.io/topics/twitter-clone
http://redis.io/topics/twitter-clone
http://dx.doi.org/10.1145/2737924.2737981
http://dx.doi.org/10.1145/2043556.2043592

and Implementation (NSDI), NSDI’09, pages 43–
58, Berkeley, CA, USA, 2009. USENIX Associ-
ation. URL http://dl.acm.org/citation.cfm?
id=1558977.1558981.

[60] D.B. Terry, A.J. Demers, K. Petersen, M.J. Spre-
itzer, M.M. Theimer, and B.B. Welch. Session
guarantees for weakly consistent replicated data. In
Proceedings of 3rd International Conference on
Parallel and Distributed Information Systems, PDIS.
Institute of Electrical
& Electronics Engineers (IEEE), 1994.
doi:10.1109/pdis.1994.331722.

[61] Douglas B. Terry, Vijayan Prabhakaran, Ramakr-
ishna Kotla, Mahesh Balakrishnan, Marcos K. Aguil-
era, and Hussam Abu-Libdeh. Consistency-based
service level agreements for cloud storage. In Pro-
ceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles - SOSP 13. ACM
Press, 2013. doi:10.1145/2517349.2522731.

[62] The Linux Foundation. netem. http://
www.linuxfoundation.org/collaborate/
workgroups/networking/netem, November
2009.

[63] Twitter, Inc. Finagle. https://twitter.github.
io/finagle/, March 2016.

[64] Werner Vogels. Eventually consistent. Commu-
nications of the ACM, 52 (1): 40, January 2009.
doi:10.1145/1435417.1435432.

[65] Chao Xie, Chunzhi Su, Manos Kapritsos, Yang
Wang, Navid Yaghmazadeh, Lorenzo Alvisi, and
Prince Mahajan. Salt: Combining acid and base in
a distributed database. In 11th USENIX Symposium
on Operating Systems Design and Implemen-
tation (OSDI 14), pages 495–509, Broomfield,
CO, October 2014. USENIX Association. ISBN
978-1-931971-16-4. URL https://www.usenix.
org/conference/osdi14/technical-sessions/
presentation/xie.

[66] Chao Xie, Chunzhi Su, Cody Littley, Lorenzo
Alvisi, Manos Kapritsos, and Yang Wang.
High-Performance ACID via Modular Con-
currency Control. In ACM Symposium on
Operating Systems Principles (SOSP), SOSP,
pages 276–291, 2015. ISBN 978-1-4503-2388-8.
doi:10.1145/2517349.2522729.

[67] Haifeng Yu and Amin Vahdat. Design and evaluation
of a conit-based continuous consistency model for
replicated services. ACM Transactions on Computer
Systems (TOCS), 20 (3): 239–282, 2002.

16

http://dl.acm.org/citation.cfm?id=1558977.1558981
http://dl.acm.org/citation.cfm?id=1558977.1558981
http://dx.doi.org/10.1109/pdis.1994.331722
http://dx.doi.org/10.1145/2517349.2522731
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
https://twitter.github.io/finagle/
https://twitter.github.io/finagle/
http://dx.doi.org/10.1145/1435417.1435432
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/xie
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/xie
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/xie
http://dx.doi.org/10.1145/2517349.2522729

	1. Introduction
	2. The Case for Consistency Safety
	3. Programming Model
	3.1. Overview
	3.2. Abstract Data Types
	3.3. Consistency Policies
	3.4. Consistency Types
	3.4.1. Rushed types
	3.4.2. Interval types

	4. Enforcing consistency policies
	4.1. Latency bounds
	4.1.1. Monitors

	4.2. Error bounds
	4.2.1. Reservation Server
	4.2.2. Enforcing error bounds
	4.2.3. Narrowing bounds

	5. Implementation
	6. Evaluation
	6.1. Simulating adverse conditions
	6.2. Microbenchmark: Counter
	6.2.1. Latency bounds
	6.2.2. Error bounds

	6.3. Applications
	6.3.1. Ticket service
	6.3.2. Twitter clone

	7. Related Work
	8. Conclusion

