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Abstract
Distributed  applications  and  web services, such  as  on-
line stores or social networks, are expected to be scalable,
available, responsive, and fault-tolerant. To meet  these
steep requirements in the face of high round-trip laten-
cies, network partitions, server failures, and load spikes,
applications use eventually consistent datastores that al-
low them to weaken the consistency of some data. How-
ever, making this transition is highly error-prone because
relaxed consistency models are notoriously difficult to un-
derstand and test.

In this work, we propose a new programming model
for distributed data that makes consistency properties ex-
plicit and uses a type system to enforce consistency safety.
With the Inconsistent, Performance-bound, Approximate
(IPA) storage system, programmers specify performance
targets and correctness requirements as constraints on per-
sistent data structures and handle uncertainty about the re-
sult of datastore reads using new consistency types. We
implement a prototype of this model in Scala on top of an
existing datastore, Cassandra, and use it to make perfor-
mance/correctness tradeoffs in two applications: a ticket
sales service and a Twitter clone. Our evaluation shows
that IPA prevents consistency-based programming errors
and adapts consistency automatically in response to chang-
ing network conditions, performing comparably to weak
consistency and 2-10× faster than strong consistency.
1. Introduction
To provide good user experiences, modern datacenter ap-
plications and web services must balance the competing re-
quirements of application correctness and responsiveness.
For example, a web store double-charging for purchases or
keeping users waiting too long (each additional millisec-
ond of latency [26, 36]) can translate to a loss in traffic
and revenue. Worse, programmers must maintain this bal-
ance in an unpredictable environment where a black and
blue dress [42] or Justin Bieber [38] can change applica-
tion performance in the blink of an eye.

Recognizing the trade-off between consistency and per-
formance, many existing storage systems support config-
urable consistency levels that allow programmers to set

the consistency of individual operations [4, 11, 34, 58].
These allow programmers to weaken consistency guaran-
tees only for data that is not critical to application correct-
ness, retaining strong consistency for vital data. Some sys-
tems further allow adaptable consistency levels at runtime,
where guarantees are only weakened when necessary to
meet availability or performance requirements (e.g., dur-
ing a spike in traffic or datacenter failure) [59, 61]. Un-
fortunately, using these systems correctly is challenging.
Programmers can inadvertently update strongly consistent
data in the storage system using values read from weakly
consistent operations, propagating inconsistency and cor-
rupting stored data. Over time, this undisciplined use of
data from weakly consistent operations lowers the consis-
tency of the storage system to its weakest level.

In this paper, we propose a more disciplined approach
to inconsistency in the Inconsistent, Performance-bound,
Approximate (IPA) storage system. IPA introduces the fol-
lowing concepts:
• Consistency Safety, a new property that ensures that

values from weakly consistent operations cannot flow
into stronger consistency operations without explicit
endorsement from the programmer. IPA is the first stor-
age system to provide consistency safety.

• Consistency Types, a new type system in which type
safety implies consistency safety. Consistency types de-
fine the consistency and correctness of  the returned
value from every storage operation, allowing program-
mers to reason about their use of different consistency
levels. IPA’s type checker enforces the disciplined use
of IPA consistency types statically at compile time.

• Error-bounded  Consistency. IPA is  a  data  structure
store, like Redis [54] or Riak [11], allowing it to pro-
vide a new type of weak consistency that places nu-
meric  error  bounds on  the  returned  values. Within
these bounds, IPA automatically adapts to return the
strongest IPA consistency type possible under the cur-
rent system load.

We implement an IPA prototype based on Scala and Cas-
sandra and show that IPA allows the programmer to trade
off performance and consistency, safe in the knowledge
that the type system has checked the program for consis-
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Showings

! Grand Theater

Star Wars 7pm
Remaining:

STAR WARS 7pm

5

Purchase"Star Wars 9pm

Spectre 6:30pm

// adjust price based on number of tickets left

def computePrice(ticketsRemaining: Int): Float

// called from purchaseTicket & displayEvent

def getTicketCount(event: UUID): Int =

  // use weak consistency for performance

  readWeak(event+"ticket_count")

def purchaseTicket(event: UUID) = {

  val ticket = reserveTicket(event)

  val remaining = getTicketCount(event)

  // compute price based on inconsistent read

  val price = computePrice(remaining)

  display("Enter payment info. Price: ", price)

}

STAR WARS 7pm

Enter payment info.

Price: $15

Figure 1. Ticket  sales  service. To  meet  a  performance  tar-
get in displayEvent, developer switches to a weak read for
getTicketCount, not realizing that this inconsistent read will be
used elsewhere to compute the ticket price.

tency safety. We demonstrate experimentally that these
mechanisms allow applications to dynamically adapt cor-
rectness  and  performance  to  changing  conditions  with
three applications: a simple counter, a Twitter clone based
on Retwis [55] and a Ticket sales service modeled after
FusionTicket [1].

2. The Case for Consistency Safety
Unpredictable  Internet  traffic  and  unexpected  failures
force modern datacenter applications to trade off consis-
tency for performance. In this section, we demonstrate the
pitfalls of doing so in an undisciplined way. As an exam-
ple, we describe a movie ticketing service, similar to AMC
or Fandango. Because ticketing services process financial
transactions, they must ensure correctness, which they can
do by storing data in a strongly consistent storage system.
Unfortunately, providing strong consistency for every stor-
age operation can cause the storage system and application
to collapse under high load, as several ticketing services
did in October 2015, when tickets became available for
the new Star Wars movie [21].

To  allow  the  application  to  scale  more  gracefully
and handle traffic spikes, the programmer may chose to
weaken the consistency of some operations. As shown
in Figure 1, the ticket application displays each showing of
the movie along with the number of tickets remaining. For
better performance, the programmer may want to weaken
the consistency of the read operation that fetches the re-
maining ticket count to give users an estimate, instead of
the most up-to-date value. Under normal load, even with
weak consistency, this count would often still be correct
because propagation is typically fast compared to updates.
However, eventual consistency makes no guarantees, so

under heavier traffic spikes, the values could be signifi-
cantly incorrect and the application has no way of know-
ing by how much.

While this solves the programmer’s performance prob-
lem, it introduces a data consistency problem. Suppose
that, like Uber’s surge pricing, the ticket sales application
wants to raise the price of the last 100 tickets for each
showing to $15. If the application uses a strongly consis-
tent read to fetch the remaining ticket count, then it can
use that value to compute the price of the ticket on the
last screen in Figure 1. However, if the programmer reuses
getTicketCount which used a weak read to calculate the
price, then this count could be arbitrarily wrong. The ap-
plication could then over- or under-charge some users de-
pending on the consistency of the returned value. Worse,
the theater expects to make $1500 for those tickets with the
new pricing model, which may not happen with the new
weaker read operation. Thus, programmers need to be care-
ful in their use of values returned from storage operations
with weak consistency. Simply weakening the consistency
of an operation may lead to unexpected consequences for
the programmer (e.g., the theater not selling as many tick-
ets at the higher surge price as expected).

In this work, we propose a programming model that can
prevent using inconsistent values where they were not in-
tended, as well as introduce mechanisms that allow the
storage system to dynamically adapt consistency within
predetermined performance and correctness bounds.
3. Programming Model
We propose a programming model  for  distributed data
that  uses types to control  the consistency–performance
trade-off. The Inconsistent, Performance-bound, Approx-
imate (IPA) type system helps developers trade consis-
tency for performance in a disciplined manner. This sec-
tion presents the IPA programming model, including the
available consistency policies and the semantics of oper-
ations performed under the policies. §4 will explain how
the type system’s guarantees are enforced.
3.1. Overview
The IPA programming model consists of three parts:
• Abstract data types (ADTs) implement common data

structures (such as Set[T]) on distributed storage.
• Consistency policies on ADTs specify the desired con-

sistency level for an object in application-specific terms
(such as latency or accuracy bounds).

• Consistency types track the consistency of operation re-
sults and enforce consistency safety by requiring devel-
opers to consider weak outcomes.

Programmmers annotate ADTs with consistency policies
to choose their desired level of consistency. The consis-
tency policy on the ADT operation determines the consis-
tency type of the result. Table 1 shows some examples; the
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ADT / Method Consistency(Strong) Consistency(Weak) LatencyBound(_) ErrorTolerance(_)

Counter.read() Consistent[Int] Inconsistent[Int] Rushed[Int] Interval[Int]

Set.size() Consistent[Int] Inconsistent[Int] Rushed[Int] Interval[Int]

Set.contains(x) Consistent[Bool] Inconsistent[Bool] Rushed[Bool] N/A
List[T].range(x,y) Consistent[List[T]] Inconsistent[List[T]] Rushed[List[T]] N/A
UUIDPool.take() Consistent[UUID] Inconsistent[UUID] Rushed[UUID] N/A
UUIDPool.remain() Consistent[Int] Inconsistent[Int] Rushed[Int] Interval[Int]

Table 1. Example ADT operations; consistency policies determine the consistency type of the result.

next few sections will introduce each of the policies and
types in detail. Together, these three components provide
two key benefits for developers. First, the IPA type system
enforces consistency safety, tracking the consistency level
of  each result  and preventing inconsistent  values from
flowing into consistent values. Second, the programming
interface enables performance–correctness trade-offs, be-
cause consistency policies on ADTs allow the runtime to
select a consistency level for each individual operation
that maximizes performance in a constantly changing en-
vironment. Together, these systems allow applications to
adapt to changing conditions with the assurance that the
programmer has expressed how it should handle varying
consistency.
3.2. Abstract Data Types
The base of the IPA type system is a set of abstract data
types (ADTs) for distributed data structures. ADTs present
a clear abstract model through a set  of operations that
query and update state, allowing users and systems alike
to reason about their logical, algebraic properties rather
than the  low-level  operations  used to  implement  them.
Though the simplest key-value stores only support prim-
itive types like strings for values, many popular datastores
have built-in support for more complex data structures
such as sets, lists, and maps. However, the interface to
these datatypes differs: from explicit sets of operations for
each type in Redis, Riak, and Hyperdex [11, 25, 31, 54]
to the pseudo-relational model of Cassandra [32]. IPA’s
extensible library of ADTs allows it to decouple the se-
mantics of the type system from any particular datastore,
though our reference implementation is on top of Cassan-
dra, similar to [57].

Besides  abstracting  over  storage  systems, ADTs are
an ideal place from which to reason about consistency
and system-level optimizations. The consistency of a read
depends on the write that produced the value. Annotat-
ing ADTs with consistency policies ensures the necessary
guarantees for all operations are enforced, which we will
expand on in the next section.

Custom ADTs can express application-level correctness
constraints. IPA’s Counter ADT allows reading the cur-
rent value as well as increment and decrement operations.
In our ticket sales example, we must ensure that the ticket

count does not go below zero. Rather than forcing all oper-
ations on the datatype to be linearizable, this application-
level invariant can be expressed with a more specialized
ADT, such as a BoundedCounter, giving the implementa-
tion more latitude for enforcing it. IPA’s library is extensi-
ble, allowing custom ADTs to build on common features;
see §5.
3.3. Consistency Policies
Previous systems [4, 11, 34, 58, 61] require annotating
each read and write operation with a desired consistency
level. This per-operation approach complicates reasoning
about the safety of code using weak consistency, and hin-
ders global optimizations that can be applied if the system
knows the consistency level required for future operations.
The IPA programming model provides a set of consistency
policies that can be placed on ADT instances to specify
consistency properties for the lifetime of the object. Con-
sistency policies come in two flavors: static and dynamic.

Static policies are fixed, such as Consistency(Strong)
which states that operations must have strongly consistent
behavior. Static annotations provide the same direct con-
trol as previous approaches but simplify reasoning about
correctness by applying them globally on the ADT.

Dynamic policies specify a consistency level in terms of
application requirements, allowing the system to decide at
runtime how to meet the requirement for each executed
operation. IPA offers two dynamic consistency policies:
• A latency policy LatencyBound(x) specifies a target

latency for operations on the ADT (e.g., 20 ms). The
runtime can choose the consistency level for each is-
sued operation, optimizing for the strongest level that
is likely to satisfy the latency bound.

• An accuracy policy ErrorTolerance(x%) specifies the
desired accuracy for read operations on the ADT. For
example, the size of a Set ADT may only need to
be accurate within 5% tolerance. The runtime can opti-
mize the consistency of write operations so that reads
are guaranteed to meet this bound.

Dynamic policies allow the runtime to extract more perfor-
mance from an application by relaxing the consistency of
individual operations, safe in the knowledge that the IPA
type system will enforce safety by requiring the developer
to consider the effects of weak operations.
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Rushed[T]

⊤ := Consistent[T]

⊥ := Inconsistent[T]

LocalQuorum[T]Interval[T] ...

Datastore-specific

consistency levels

Figure 2. IPA Type Lattice parameterized by a type T.
Static  and  dynamic  policies  can  apply  to  an  entire

ADT instance or on individual methods. For example, one
could  declare List[Int] with LatencyBound(50 ms),
in which case all read operations on the list are subject to
the bound. Alternatively, one may wish to declare a Set
with relaxed consistency for its size but strong consis-
tency for its contains predicate. The runtime is responsi-
ble for managing the interaction between these policies. In
the case of a conflict between two bounds, the system can
be conservative and choose stronger policies than speci-
fied without affecting correctness.

In the ticket sales application, the Counter for each
event’s  tickets  could  have  a  relaxed  accuracy  policy,
ErrorTolerance(5%), allowing  the  system  to  quickly
read  the  count  of  tickets  remaining. An  accuracy  pol-
icy  is  appropriate  here  because  it  expresses  a  domain
requirement—users want to see accurate ticket counts. As
long as the system meets this requirement, it is free to re-
lax consistency and maximize performance without vio-
lating correctness. The List ADT used for events has a
latency policy that also expresses a domain requirement—
that pages on the website load in reasonable time.
3.4. Consistency Types
The key to consistency safety in IPA is the consistency
types—enforcing type safety directly enforces consistency
safety. Read operations of ADTs annotated with consis-
tency policies return instances of a consistency type. These
consistency types track the consistency of the results and
enforce a fundamental non-interference property: results
from weakly consistent operations cannot flow into com-
putations with stronger consistency without explicit en-
dorsement. This could be enforced dynamically, as in dy-
namic  information flow control  systems, but  the  static
guarantees of a type system allow errors to be caught at
compile time.

The consistency types encapsulate information about
the consistency achieved when reading a value. Formally,
the consistency types form a lattice parameterized by a
primitive type T, shown in Figure 2. Strong read opera-
tions return values of type Consistent[T] (the top ele-
ment), and so (by implicit cast) behave as any other in-
stance of type T. Intuitively, this equivalence is because
the results  of  strong reads are known to be consistent,
which corresponds  to  the  control  flow in  conventional
(non-distributed) applications. Weaker read operations re-
turn values of some type lower in the lattice (weak consis-

tency types), reflecting their possible inconsistency. The
bottom element Inconsistent[T] specifies an object with
the weakest possible (or unknown) consistency. The other
consistency types follow a subtyping relation ≺ as illus-
trated in Figure 2.

The only possible operation on Inconsistent[T] is
to endorse it. Endorsement  is  an  upcast, invoked  by
Consistent(x), to the top element Consistent[T] from
other types in the lattice:

Γ ⊢ e1 : τ[T ] T ≺ τ[T ]

Γ ⊢ Consistent(e1) : T

The core type system statically enforces safety by prevent-
ing weaker values from flowing into stronger computa-
tions. Forcing developers to explicitly endorse inconsis-
tent values prevents them from accidentally using incon-
sistent data where they did not determine it was accept-
able, essentially inverting the behavior of current systems
where inconsistent data is always treated as if it was safe to
use anywhere. However, endorsing values blindly in this
way is not the intended use case; the key productivity ben-
efit of the IPA type system comes from the other consis-
tency types which correspond to the dynamic consistency
policies in §3.3 which allow developers to handle dynamic
variations in consistency, which we describe next.
3.4.1. Rushed types
The weak consistency type Rushed[T] is the result of read
operations performed on an ADT with consistency policy
LatencyBound(x). Rushed[T] is a sum (or union) type,
with one variant per consistency level available to the im-
plementation of LatencyBound. Each variant is itself a
consistency type (though the variants obviously cannot be
Rushed[T] itself). The effect is that values returned by a
latency-bound object carry with them their actual consis-
tency level. A result of type Rushed[T] therefore requires
the developer to consider the possible consistency levels
of the value.

For  example, a  system with  geo-distributed  replicas
may only be able to satisfy a latency bound of 50 ms with
a local quorum read (that is, a quorum of replicas within
a single datacenter). In this case, Rushed[T] would be the
sum of three types Consistent[T], LocalQuorum[T], and
Inconsistent[T]. A match statement destructures the re-
sult of a latency-bound read operation:

set.contains() match {

case Consistent(x) => print(x)

case LocalQuorum(x) => print(x+", locally")

case Inconsistent(x) => print(x+"???")

}

The  application  may  want  to  react  differently  to  a  lo-
cal quorum as opposed to a strongly or weakly consis-
tent value. Note that because of the subtyping relation
on consistency types, omitted cases can be matched by
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any type lower in the lattice, including the bottom ele-
ment Inconsistent(x); other cases therefore need only
be added if the application should respond differently to
them. This subtyping behavior allows applications to be
portable between systems supporting different forms of
consistency (of which there are many).
3.4.2. Interval types
Tagging values with a consistency level is useful because
it helps programmers tell which operation reorderings are
possible (e.g. strongly consistent operations will be ob-
served to happen in program order). However, accuracy
policies provide a different way of dealing with inconsis-
tency by expressing it in terms of value uncertainty. They
require knowing the abstract behavior of operations in or-
der to determine the change in abstract state which results
from each reordered operation (e.g., reordering increments
on a Counter has a known effect on the value of reads).

The weak consistency type Interval[T] is the result of
operations performed on an ADT with consistency policy
ErrorTolerance(x%). Interval[T] represents an inter-
val of values within which the true (strongly consistent) re-
sult lies. The interval reflects uncertainty in the true value
created by relaxed consistency, in the same style as work
on approximate computing [15].

The key invariant of the Interval type is that the inter-
val must include the result of some linearizable execution.
Consider a Set with 100 elements. With linearizability, if
we add a new element and then read the size (or if this
ordering is otherwise implied), we must get 101 (provided
no other updates are occurring). However, if size is anno-
tated with ErrorTolerance(5%), then it could return any
interval that includes 101, such as [95,105] or [100,107],
so the client cannot tell if the recent add was included in
the size. This frees the system to optimize to improve per-
formance, such as by delaying synchronization. While any
partially-ordered domain could be represented as an inter-
val (e.g., a Set with partial knowledge of its members), in
this work we consider only numeric types.

In the ticket sales example, the counter ADT’s accuracy
policy means that reads of the number of tickets return
an Interval[Int]. If the entire interval is above zero,
then users can be assured that there are sufficient tickets
remaining. In fact, because the interval could represent
many possible linearizable executions, in the absence of
other user actions, a subsequent purchase must succeed.
On the other hand, if the interval overlaps with zero, then
there is a chance that tickets could already be sold out, so
users could be warned. Note that ensuring that tickets are
not over-sold is a separate concern requiring a different
form of enforcement, which we describe in §5. The re-
laxed consistency of the interval type allows the system
to optimize performance in the common case where there
are many tickets available, and dynamically adapt to con-

tention when the ticket count diminishes.
4. Enforcing consistency policies
The consistency policies introduced in the previous sec-
tion  allow  programmers  to  describe  application-level
correctness  properties. Static  consistency  policies  (e.g.
Strong) are enforced by the underlying storage system;
the annotated ADT methods simply set the desired con-
sistency level when issuing requests to the store. The dy-
namic policies each require a new runtime mechanism to
enforce them: parallel  operations with latency monitor-
ing for latency bounds, and reusable reservations for er-
ror tolerance. But first, we briefly review consistency in
Dynamo-style replicated systems.

To be sure of seeing a particular write, strong reads
must coordinate with a majority (quorum) of replicas and
compare  their  responses. For  a  write  and  read  pair  to
be strongly consistent (in the CAP sense [17]), the repli-
cas acknowledging the write (W ) plus the replicas con-
tacted for the read (R) must be greater than the total num-
ber of replicas (W + R > N). This can be achieved, for
example, by writing to a quorum ((N + 1)/2) and read-
ing from a quorum (QUORUM in Cassandra), or writing to
N (ALL) and reading from 1 (ONE) [22]. To support the
Consistency(Strong) policy, the designer of each ADT
must choose consistency levels for its operations which
together enforce strong consistency.
4.1. Latency bounds
The time it takes to achieve a particular level of consis-
tency depends on current conditions and can vary over
large time scales (minutes or hours) but can also vary sig-
nificantly for individual operations. During normal opera-
tion, strong consistency may have acceptable performance
while at peak traffic times the application would fall over.
Latency bounds specified by the application allow the sys-
tem to dynamically adjust to maintain comparable perfor-
mance under varying conditions.

Our  implementation  of  latency-bound  types  takes  a
generic approach: it issues read requests at different con-
sistency levels in parallel. It composes the parallel opera-
tions and returns a result either when the strongest oper-
ation returns, or with the strongest available result at the
specified time limit. If no responses are available at the
time limit, it waits for the first to return.

This approach makes no assumptions about the imple-
mentation of read operations, making it easily adaptable to
different storage systems. Some designs may permit more
efficient implementations: for example, in a Dynamo-style
storage system we could send read requests to all replicas,
then compute the most consistent result from all responses
received within the latency limit. However, this requires
deeper access to the storage system implementation than
is traditionally available.
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4.1.1. Monitors
The main problem with our approach is that it wastes work
by issuing parallel requests. Furthermore, if the system is
responding slower due to a sudden surge in traffic, then it
is essential that our efforts not cause additional burden on
the system. In these cases, we should back off and only at-
tempt weaker consistency. To do this, the system monitors
current traffic and predicts the latency of different consis-
tency levels.

Each client in the system has its own Monitor (though
multi-threaded clients can share one). The monitor records
the observed latencies of reads, grouped by operation and
consistency level. The monitor uses an exponentially de-
caying reservoir to compute running percentiles weighted
toward recent measurements, ensuring that its predictions
continually adjust to current conditions.

Whenever  a  latency-bound  operation  is  issued, it
queries the monitor to determine the strongest consistency
likely to be achieved within the time bound, then issues
one request at that consistency level and a backup at the
weakest level, or only weak if none can meet the bound.
In §6.2.1 we show empirically that even simple monitors
allow clients to adapt to changing conditions.
4.2. Error bounds
We implement error bounds by building on the concepts of
escrow and reservations [27, 44, 48, 50]. These techniques
have been used in storage systems to enforce hard limits,
such as an account balance never going negative, while
permitting concurrency. The idea is to set aside a pool of
permissions to perform certain update operations (we’ll
call them reservations or tokens), essentially treating op-
erations as a manageable resource. If we have a counter
that should never go below zero, there could be a num-
ber of decrement tokens equal to the current value of the
counter. When a client wishes to decrement, it must first
acquire sufficient tokens before performing the update op-
eration, whereas increments produce new tokens. The in-
sight is that the coordination needed to ensure that there
are never too many tokens can be done off the critical path:
tokens can be produced lazily if there are enough around
already, and most importantly for this work, they can be
distributed among replicas. This means that replicas can
perform some update operations safely without coordinat-
ing with any other replicas.
4.2.1. Reservation Server
Reservations require mediating requests to the datastore
to prevent updates from exceeding the available tokens.
Furthermore, each server must locally know how many to-
kens it has without synchronizing. We are not aware of
a commercial datastore that supports custom mediation
of requests and replica-local state, so we need a custom
middleware layer to handle reservation requests, similar
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Figure 3. Reservations enforcing error bounds.

to other systems which have built stronger guarantees on
top of existing datastores [8, 10, 57].

Any client requests requiring reservations are routed to
one of a number of reservation servers. These servers then
forward operations when permitted along to the underly-
ing datastore. All persistent data is kept in the backing
store; these reservation servers keep only transient state
tracking available reservations. The number of reservation
servers can theoretically be decoupled from the number of
datastore replicas; our implementation simply colocates a
reservation server with each datastore server and uses the
datastore’s node discovery mechanisms to route requests
to reservation servers on the same host.
4.2.2. Enforcing error bounds
Reservations have been used previously to enforce hard
global invariants in the form of upper or lower bounds
on  values [10], integrity  constraints [9], or  logical  as-
sertions [37]. However, enforcing error tolerance bounds
presents a new design challenge because the bounds are
constantly shifting. Consider a Counter with a 10% error
bound, shown in Figure 3. If the current value is 100, then
10 increments can be done before anyone must be told
about it. However, we have 3 reservation servers, so these
10 reservations are distributed among them, allowing each
to do some increments without synchronizing. If only 10
outstanding increments are allowed, reads are guaranteed
to maintain the 10% error bound.

In order to perform more increments after a server has
exhausted its reservations, it must synchronize with the
others, sharing  its  latest  increments  and  receiving  any
changes of theirs. This is accomplished by doing a strong
write (ALL) to the datastore followed by a read. Once that
synchronization has completed, those 3 tokens become
available again because the reservation servers all tem-
porarily agree on the value (in this case, at least 102).

Read operations for these types go through reservation
servers as well: the server does a weak read from any
replica, then determines the interval based on how many
reservations there are. For the read in Figure 3, there are
10 reservations total, but Server B knows that it has not
used its local reservations, so it knows that there cannot
be more than 6 and can return the interval [100,106].
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4.2.3. Narrowing bounds
Error-tolerance  policies  give  an upper  bound on  the
amount of error; ideally, the interval returned will be more
precise than the maximum error when conditions are favor-
able. The error bound determines the maximum number of
reservations that can be allocated per instance. To allow
a variable number of tokens, each ADT instance keeps a
count of tokens allocated by each server, and when servers
receive write requests, they increment their count to allo-
cate tokens to use. Allocating must be done with strong
consistency to ensure all servers agree, which can be ex-
pensive, so we use long leases (on the order of seconds)
to allow servers to cache their allocations. When a lease
is about to expire, it preemptively refreshes its lease in the
background so that writes do not block.

For each type of update operation there may be a dif-
ferent pool of reservations. Similarly, there could be dif-
ferent error bounds on different read operations. It is up
to the designer of the ADT to ensure that all error bounds
are enforced with appropriate reservations. Consider a Set
with an error tolerance on its size operation. This requires
separate pools for add and remove to prevent the overall
size from deviating by more than the bound in either direc-
tion, so the interval is [v−remove.delta,v+add.delta]
where v is the size of the set and delta computes the
number of outstanding operations from the pool. In some
situations, operations may produce and consume tokens
in the same pool – e.g., increment producing tokens for
decrement – but this is only allowable if updates propa-
gate in a consistent order among replicas, which may not
be the case in some eventually consistent systems.
5. Implementation
IPA is implemented mostly as a client-side library to an off-
the-shelf distributed storage system, though reservations
are handled by a custom middleware layer which medi-
ates accesses to any data with error tolerance policies. Our
implementation is built on top of Cassandra, but IPA could
work with any replicated storage system that supports fine-
grained consistency control, which many commercial and
research datastores do, including Riak [11].

IPA’s client-side programming interface is written in
Scala, using the asynchronous futures-based Phantom [45]
library for type-safe access to Cassandra data. Reserva-
tion server middleware is also built in Scala using Twit-
ter’s Finagle framework [63]. Communication is done be-
tween clients and Cassandra via prepared statements, and
between clients and reservation servers via Thrift remote-
procedure-calls [6]. Due to its type safety features, ab-
straction capability, and compatibility  with Java, Scala
has  become  popular  for  web  service  development, in-
cluding widely-used frameworks such as Akka [35] and
Spark [5], and at established companies such as Twitter
and LinkedIn [2, 18, 29].

trait LatencyBound {

  // execute readOp with strongest consistency possible

  // within the latency bound

  def rush[T](bound: Duration, 

              readOp: ConsistencyLevel => T): Rushed[T]

}

/* Generic reservaton pool, one per ADT instance. 

   `max` recomputed as needed (e.g. for % error) */

class ReservationPool(max: () => Int) {

  def take(n: Int): Boolean // try to take tokens

  def sync(): Unit      // sync to regain used tokens

  def delta(): Int      // # possible ops outstanding

}

/* Counter with ErrorBound (simplified) */

class Counter(key: UUID) with ErrorTolerance {

  def error: Float // % tolerance (defined by instance)

  def maxDelta() = (cassandra.read(key) * error).toInt

  val pool = ReservationPool(maxDelta)

  

  def read(): Interval[Int] = {

    val v = cassandra.read(key)

    Interval(v - pool.delta, v + pool.delta)

  }

  def incr(n: Int): Unit =

    waitFor(pool.take(n)) { cassandra.incr(key, n) }

}

Figure 4. Some of the reusable components provided by IPA and
an example implemention of a Counter with error bounds.

The IPA type system, responsible for consistency safety,
is also simply part of our client library, leveraging Scala’s
sophisticated type system. The IPA type lattice is imple-
mented as a subclass hierarchy of parametric classes, us-
ing Scala’s support for higher-kinded types to allow them
to be destructured in match statements, and implicit con-
versions to allow Consistent[T] to be treated as type T.
We use traits to implement ADT annotations; e.g. when the
LatencyBound trait is mixed into an ADT, it wraps each
of the methods, redefining them to have the new semantics
and return the correct IPA type.

IPA comes with a library of reference ADT implemen-
tations used in our experiments, but it is intended to be
extended with custom ADTs to fit more specific use cases.
Our implementation provides a number of primitives for
building ADTs, some of which are shown in Figure 4. To
support latency bounds, there is a generic LatencyBound
trait that provides facilities for executing a specified read
operation at multiple consistency levels within a time limit.
For implementing error bounds, IPA provides a generic
reservation pool which ADTs can use. Figure 4 shows how
a Counter with error tolerance bounds is implemented us-
ing these pools. The library of reference ADTs includes:
• Counter based on Cassandra’s counter, supporting in-

crement and decrement, with latency and error bounds
• BoundedCounter CRDT from [10] that enforces a hard

lower bound even with weak consistency. Our imple-
mentation adds the ability to bound error on the value
of the counter and set latency bounds.

• Set with add, remove, contains and size, supporting
latency bounds, and error bounds on size.

• UUIDPool generates unique identifiers, with a hard limit
on the number of IDs that can be taken from it; built on
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top of BoundedCounter and supports the same bounds.
• List: thin abstraction around a Cassandra table with a

time-based clustering order, supports latency bounds.
Figure 4 shows Scala code using reservation pools to im-
plement a Counter with error bounds. The actual imple-
mentation splits this functionality between the client and
the reservation server.
6. Evaluation
The goal of the IPA programming model and runtime sys-
tem is to build applications that adapt to changing condi-
tions, performing nearly as well as weak consistency but
with stronger consistency and safety guarantees. To that
end, we evaluate our prototype implementation under a va-
riety of network conditions using both a real-world testbed
(Google Compute Engine [28])  and simulated network
conditions. We start with simple microbenchmarks to un-
derstand the performance of each of the runtime mecha-
nisms independently. We then study two applications in
more depth, exploring qualitatively how the programming
model  helps  avoid  potential  programming  mistakes  in
each and then evaluating their performance against strong
and weakly consistent implementations.
6.1. Simulating adverse conditions
To control  for  variability, we perform our experiments
with  a  number  of  simulated  conditions, and  then  vali-
date our findings against experiments run on globally dis-
tributed machines in Google Compute Engine. We use a lo-
cal test cluster with nodes linked by standard ethernet and
Linux’s Network Emulation facility [62] (tc netem) to in-
troduce packet delay and loss at the operating system level.
We use Docker containers [24] to enable fine-grained con-
trol of the network conditions between processes on the
same physical node.

Table 2 shows  the  set  of  conditions  we  use  in  our
experiments to explore the behavior of the system. The
uniform 5ms link simulates a well-provisioned datacen-
ter; slow replica models contention or hardware problems
that cause one replica to be slower than others, and geo-
distributed replicates  the  latencies  between virtual  ma-
chines in the U.S., Europe, and Asia on Amazon EC2 [3].
These simulated conditions are validated by experiments
on Google Compute Engine with virtual machines in four
datacenters: the client in us-east, and the storage replicas
in us-central, europe-west, and asia-east. We elide the re-
sults for Local (same rack in our testbed) except in Fig-
ure 11 because the differences between policies are negli-
gible, so strong consistency should be the default there.
6.2. Microbenchmark: Counter
We start by measuring the performance of a simple applica-
tion that randomly increments and reads from a number of
counters with different IPA policies. Random operations
(incr(1) and read) are uniformly distributed over 100

Network Condition Latencies (ms)
Simulated Replica 1 Replica 2 Replica 3
Uniform / High load 5 5 5
Slow replica 10 10 100
Geo-distributed (EC2) 1 ± 0.3 80 ± 10 200 ± 50
Actual Replica 1 Replica 2 Replica 3
Local (same rack) <1 <1 <1
Google Compute Engine 30 ± <1 100 ± <1 160 ± <1

Table 2. Network conditions for experiments: latency from client
to each replicas, with standard deviation if high.
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Figure 5. Counter: latency bounds, mean latency. Beneath each
bar is the % of strong reads. Strong consistency is never possi-
ble for the 10ms bound, but 50ms bound achieves mostly strong,
only resorting to weak when network latency is high.

counters from a single multithreaded client (allowing up
to 4000 concurrent operations).
6.2.1. Latency bounds
Latency bounds provide predictable performance while
maximizing consistency. We found that when latencies
and load are low it  is  often possible to achieve strong
consistency. Figure 5 shows the average operation latency
with strong and weak consistency, as well with both 10ms
and 50ms latency bounds.

As expected, there is a significant cost to strong con-
sistency under all network conditions. IPA cannot achieve
strong consistency under 10ms in any case, so the system
must always default to weak consistency. With a 50ms
bound, IPA can achieve strong consistency in conditions
when network latency is low (i.e., the single datacenter
case). Cassandra assigns each client to read at a different
replica for load balancing, so, with one slow replica, IPA
will attempt to achieve strong consistency for all clients
but not succeed. In our experiments, IPA was able to get
strong consistency 83% of the time. Finally, with our geo-
distributed environment, there are no 2 replicas within
50ms of our client, so strong consistency is never possible
within our bounds; as a result, IPA adapts to only attempt
weak in both cases.
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(a) Mean latency (increment and read).
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Figure 7. Counter: 95th percentile latency. Latency bounds keep
tail latency down, backing off to weak when necessary.

Figure 7 shows the 95th percentile  latencies  for  the
same workload. The tail  latency of the 10ms bound is
comparable to weak consistency, whereas the 50ms bound
overloads the slow server with double the requests, caus-
ing it to exceed the latency 5% of the time. There is a
gap between latency-bound and weak consistency in the
geo-distributed case because the weak condition uses weak
reads and writes, while our rushed types, in order to have
the option of getting strong reads without requiring a read
of ALL, must do QUORUM writes.

Note that, without consistency types, it would be chal-
lenging for  programmers to  handle the varying consis-
tency of returned values in changing network conditions.
However, IPA’s type system not only gives programmers
the tools to reason about different consistency levels, it en-
forces consistency safety.
6.2.2. Error bounds
This  experiment  measures  the  cost  of  enforcing  error
bounds using the reservation system described in §4.2,
and its precision. Reservations move synchronization off
the critical path: by distributing write permissions among
replicas, reads can get strong guarantees from a single

replica. Note that reservations impact write performance,
so we must consider both in our experiments.

Figure 6a shows latencies for error bounds of 1%, 5%,
and 10%, plotting the average of read and increment oper-
ations. As expected, tighter error bounds increase latency
because it forces more frequent synchronization between
replicas. The 1% error bound provides most of the bene-
fit, except in the slow replica and geo-distributed environ-
ments where it forces synchronization frequently enough
that the added latency slows down the system. 5-10% error
bounds provide latency comparable to weak consistency.
In the geo-distributed case, the coordination required for
reservations makes even the 10% error bound 4× slower
than weak consistency, but this is still  28× faster than
strong consistency.

While we have verified that error-bounded reads remain
within our defined bounds, we also wish to know what
error occurs in practice. We modified our benchmark to
observe the actual error from weak consistency by incre-
menting counters a predetermined amount and reading the
value; results are shown in Figure 6b. We plot the percent
error of weak and strong against the actual observed inter-
val width for a 1% error bound, going from a read-heavy
(1% increments) to write-heavy (all increments, except to
check the value).

First, we find that the mean interval is less than the 1%
error bound because, for counters that are less popular, IPA
is able to return a more precise interval. At low write rate,
this interval becomes even smaller, down to .5% in the geo-
distributed experiment. Next, we find that the mean error
with weak consistency is also much less than 1%; how-
ever the maximum error that we observed is up to 60%
of the actual value. This result motivates the need for er-
ror bounded consistency to ensure that applications do not
see drastically incorrect values from weakly consistent op-
erations. Further, using the Interval type, IPA is able to
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// creates a table of pools, so each event gets its own

// 5% error tolerance on `remaining` method, weak otherwise

val tickets = UUIDPool() with Consistency(Weak)

                with Remaining(ErrorTolerance(0.05))

// called from displayEvent (& purchaseTicket)

def getTicketCount(event: UUID): Interval[Int] =

  tickets(event).remaining()

def purchaseTicket(event: UUID) = {

  // UUIDPool is safe even with weak consistency (CRDT)

  endorse(tickets(event).take()) match {

    case Some(ticket) =>

      // imprecise count returned due to error tolerance

      val remaining = getTicketCount(event)

      // use maximum count possible to be fair

      val price = computePrice(remaining.max)

      display("Ticket reserved. Price: $" + price)

      prompt_for_payment_info(price)

    case None =>

      display("Sorry, all sold out.")

  }

}

Figure 8. Ticket service code demonstrating consistency types.

give the application an estimate of the variance in the weak
read, which is often more precise than the upper bound set
by the error tolerance policy.
6.3. Applications
Next, we explore the implementation of two applications
in IPA and compare their performance against Cassandra
using purely strong or weak consistency on our simulated
network testbed and Google Compute Engine.
6.3.1. Ticket service
Our Ticket sales web service, introduced in §2, is modeled
after FusionTicket [1], which has been used as a bench-
mark in recent distributed systems research [65, 66]. We
support the following actions:
• browse: List events by venue
• viewEvent: View the full description of an event in-

cluding number of remaining tickets
• purchase: Purchase a ticket (or multiple)
• addEvent: Add an event at a venue.

Figure 8 shows a snippet of code from the IPA implemen-
tation which can be compared with the non-IPA version
from Figure 1. Tickets are modeled using the UUIDPool
type, which generates unique identifiers to reserve tickets
for purchase. The ADT ensures that, even with weak con-
sistency, it never gives out more than the maximum num-
ber of tickets, so it is safe to endorse the result of the take
operation as long as one is okay with the possibility of a
false negative. Rather than just using a weak read as in the
original example, in IPA we can bound the inconsistency
of the remaining ticket count using an error tolerance an-
notation on the tickets pool. Now to compute the price of
the reserved ticket, we call getTicketCount and get an
Interval, forcing us to decide how to handle the range
of possible ticket counts. We decide to use the max value
from the interval to be fair to users; the 5% error bound
ensures that we don’t sacrifice too much profit this way.
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Figure 9. Ticket service: mean latency, log scale. Strong consis-
tency is far too expensive (>10× slower) except when load and
latencies are low, but 5% error tolerance allows latency to be
comparable to weak consistency. The 20ms latency-bound vari-
ant is either slower or defaults to weak, providing little benefit.
Note: the ticket Pool is safe even when weakly consistent.
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Figure 10. Ticket service: throughput on Google Compute En-
gine globally-distributed testbed. Note that this counts actions
such as tweet, which can consist of multiple storage operations.
Because error tolerance does mostly weak reads and writes, its
performance tracks weak. Latency bounds reduce throughput due
to issuing the same operation in parallel.

To evaluate the performance, we run a workload mod-
elling a typical small-scale deployment: 50 venues and
200 events, with an average of 2000 tickets each (gaussian
distribution centered at 2000, stddev 500); this ticket-to-
event ratio ensures that some events run out tickets. Be-
cause real-world workloads exhibit power law distribu-
tions [20], we use a moderately skewed Zipf distribution
with coefficient of 0.6 to select events.

Figure 9 shows the average latency of a workload con-
sisting of 70% viewEvent, 19% browse, 10% purchase,
and 1% addEvent. We plot with a log scale because strong
consistency has over 5× higher latency. The purchase
event, though only 10% of the workload, drives most of
the latency increase because of the work required to pre-
vent over-selling tickets. We explore two different IPA im-
plementations: one with a 20ms latency bound on all ADTs
aiming to ensure that both viewEvent and browse com-
plete quickly, and one where the ticket pool size (“tickets
remaining”) has a 5% error bound. We see that both per-
form with nearly the same latency as weak consistency.
With the low-latency condition (uniform and high load),
20ms bound does 92% strong reads, 4% for slow replica,
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class User(id: UserID, name: String,

  followers: Set[UserID] with LatencyBound(20 ms),

  timeline: List[TweetID] with LatencyBound(20 ms))

class Tweet(id: TweetID, user: UserID, text: String,

  retweets: Set[UserID] with Size(ErrorTolerance(5%)))

def viewTimeline(user: User) = {

  // `range` returns `Rushed[List[TweetID]]`

  user.timeline.range(0,10) match { // use match to unpack

    case Consistent(tweets) =>

      for (tweetID <- tweets) 

        displayTweet(tweetID)

    case Inconsistent(tweets) =>

      // tweets may not have fully propagated yet

      for (tweetID <- tweets)

        // guard load and retry if there's an error

        Try { displayTweet(tweetID) } retryOnError

  }

}

def displayTweet(id: TweetID, user: User) = {

  val rct: Interval[Int] = tweets(id).retweets.size()

  if (rct > 1000) // abbreviate large counts (e.g. "2k")

    display("${rct.min/1000}k retweets")

  else if (rct.min == rct.max) // count is precise!

    display("Exactly ${rct.min} retweets")

  //...

  // here, `contains` returns `Consistent[Boolean]`

  // so it is automatically coerced to a Boolean

  if (tweets(id).retweets.contains(user))

    disable_retweet_button()

}

Figure 11. Twitter  data  model  with  policy  annotations,
Rushed[T] helps  catch  referential  integrity  violations  and
Interval[T] represents approximate retweet counts.
and all weak on both geo-distributed conditions.

Figure 9 also shows results on Google Compute Engine
(GCE). We see that the results of real geo-replication vali-
date the findings of our simulated geo-distribution results.

On this workload, we observe that the 5% error bound
performs well even under adverse conditions, which dif-
fers from our findings in the microbenchmark. This is be-
cause ticket UUIDPools begin full, with many tokens avail-
able, requiring less synchronization until they are close
to running out. Contrast this with the microbenchmark,
where counters started at small numbers (average of 500),
where a 5% error tolerance means fewer tokens.
6.3.2. Twitter clone
Our second application is a Twitter-like service based on
the Redis data modeling example, Retwis [55]. The data
model is simple: each user has a Set of followers, and a
List of tweets in their timeline. When a user tweets, the
tweet ID is eagerly inserted into all of their followers’ time-
lines. Retweets are tracked with a Set of users who have
retweeted each tweet.

Figure 11 shows the data model with policy annota-
tions: latency bounds on followers and timelines and an
error bound on the retweets. This ensures that when tweets
are displayed, the retweet count is not grossly inaccurate.
As shown in displayTweet, highly popular tweets with
many retweets can tolerate approximate counts – they ac-
tually abbreviate the retweet count (e.g. “2.4M”) – but
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Figure 12. Twitter clone: mean latency (all actions). The IPA
version performance comparably with weak consistency in all
but one case, while strong consistency is 2-10× slower.

average tweets, with less than 20 retweets, will  get an
exact count. This is important because for regular peo-
ple, they will notice if a friend’s retweet is not reflected
in the count, whereas Ellen Degeneres’s record-breaking
celebrity  selfie, which  nearly  brought  down Twitter  in
2014 [7], can scale because a 5% error tolerance on 3.4
million retweets provides significant slack.

The code for viewTimeline in Figure 11 demonstrates
how latency-bound Rushed[T] types can be destructured
with a match statement. In this case, the timeline (list of
tweet IDs) is retrieved with a latency bound. Tweet con-
tent is added to the store before tweet IDs are pushed onto
timelines, so with strong consistency we know that the
list of IDs will all be able to load valid tweets. However,
if the latency-bound type returns with weak consistency
(Inconsistent case), then this referential integrity prop-
erty may not hold. In that case, we must guard the call to
displayTweet and retry if any of the operations fails (e.g.,
if the retweet set wasn’t created yet).

We simulate a realistic workload by generating a syn-
thetic power-law graph, using a Zipf distribution to deter-
mine the number of followers per user. Our workload is a
random mix with 50% timeline reads, 14% tweet, 30%
retweet, 5% follow, and 1% newUser.

We see in Figure 12 that for all but the local (same rack)
case, strong consistency is over 3× slower. Our imple-
mentation, combining latency and error-bounds, performs
comparably with weak consistency but with stronger guar-
antees for the programmer. Our simulated geo-distributed
condition turns out to be the worst scenario for IPA’s Twit-
ter, with latency over 2× slower than weak consistency.
This is because weak consistency performed noticeably
better on our simulated network, which had one very close
(1ms latency) replica that it used almost exclusively.
7. Related Work
Consistency models. IPA’s consistency types could be ex-
tended to more of the thriving ecosystem of consistency
models from sequential consistency [33] and linearizabil-
ity [30], to eventual consistency [64]. A variety of interme-
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diate models fit elsewhere in the spectrum, each making
different  trade-offs  balancing performance against  ease
of programming. Session guarantees, including read-your-
writes, strengthen ordering for individual clients but re-
duce availability [60]. Many datastores allow fine-grained
consistency control: Cassandra [4]  per  operation, Riak
[11] on an object granularity, and others [34, 58]. The
Conit consistency model [67] breaks down the consistency
spectrum into numerical error, order error, and staleness,
but requires annotating each operation and explicit depen-
dency tracking, rather than annotating ADTs.

Higher-level consistency requirements. Rather than
enforcing consistency safety, some programming models
allow users to express application correctness criteria di-
rectly. In Quelea [57], programmers write contracts to de-
scribe visibility and ordering constraints, independent of
any particular consistency hierarchy, then the system se-
lects the consistency level necessary for each operation.
In Indigo [9], programmers write invariants over abstract
state  and  annotate  post-conditions  on  actions  in  terms
of the abstract state. The system analyzes annotated pro-
grams and adds coordination logic to prevent invariant vio-
lations, using a reservation system to enforce numeric con-
straints. Neither Indigo nor Quelea, however, allow pro-
grammers to specify approximations or error tolerances,
nor do they enforce any kind of performance bounds.

IPA’s  latency-bound  policies  were  inspired  by  the
consistency-based SLAs of Pileus [61]. Consistency SLAs
specify a target latency and consistency level (e.g. 100
ms with read-my-writes), associated with a utility. Each
operation specifies a  set  of  SLAs, and the system pre-
dicts which is most likely to be met, attempting to max-
imize utility, and returns both the value and the achieved
consistency level. Other systems, including PRACTI [12],
PADS [13], and WheelFS [59], have given developers
ways of expressing their desired performance and correct-
ness requirements through semantic cues and policies.

A long  history  of  systems  have  been  built  around
the  principle  that  applications  may be  willing to  toler-
ate slightly stale data in exchange for improved perfor-
mance, including databases [14, 46, 49, 51] and distributed
caches [43, 47]. These systems generally require develop-
ers to explicitly specify staleness bounds on each trans-
action in terms of absolute time (although Bernstein et
al.’s model can generate these from error bounds when a
value’s maximum rate of change is known).

The above techniques are relevant but largely orthog-
onal to our work: they provide techniques which could
be used in an IPA datastore to trade off correctness in
new ways. This work builds on those insights, introduc-
ing a new error tolerance mechanism, proposing ADT an-
notations rather than per-operation, but most importantly,
providing consistency safety via consistency types, which
ensure that all possible cases are handled whenever the

system adjusts consistency to meet performance targets.
Previous systems gave some feedback to programs about
achieved consistency, but did not provide facilities to en-
sure and help developers use the information correctly.

Types  for  approximation. IPA’s  type  system  is  in-
spired by work on approximate computing, in which com-
putations can be selectively made inaccurate to improve
energy efficiency and performance. EnerJ [16, 53] and
Rely [19, 39]  track the flow of  approximate  values  to
prevent them from interfering with precise computation.
IPA’s interval types are similar to Uncertain<T>’s proba-
bility distributions [15] and to interval analysis [40]. One
key difference for IPA is that inconsistent values can be
strengthened if desired with additional synchronization.

Types for distributed and secure systems. Conver-
gent (or conflict-free) replicated data types (CRDTs) [56]
are data types designed for eventual consistency. Simi-
lar to how IPA types express weakened semantics which
allow for implementation on weak consistency, CRDTs
guarantee that they will converge on eventual consistency
by forcing all update operations to commute. CRDTs can
be  useful  because  they  allow concurrent  updates  with
meaningful semantics, but they are still only eventually
(or causally) consistent, so users must still deal with tem-
porary divergence and out-of-date reads, and they do not
incorporate performance bounds or variable accuracy. Par-
ticularly relevant to IPA, the Bounded Counter CRDT [10]
enforces hard limits on the global value of a counter in a
way similar to reservations but less general; this design
informed our own reservations system for error bounds.
Information flow tracking systems [23, 41, 52], also use
static type checking and dynamic analysis to enforce non-
interference between sensitive data and untrusted chan-
nels, but, to the best of our knowledge, those techniques
have not been applied to enforce consistency safety by sep-
arating weakly and strongly consistent data.

8. Conclusion
The IPA programming model provides programmers with
disciplined  ways  to  trade  consistency  for  performance
in  distributed  applications. By  specifying  application-
specific performance and accuracy targets in the form of la-
tency and error tolerance bounds, they tell the system how
to adapt when conditions change and provide it with oppor-
tunities for optimization. Meanwhile, consistency types
ensure consistency safety, ensuring that all potential weak
outcomes are handled, and allowing applications to make
choices based on the accuracy of the values the system
returns. The policies, types and enforcement systems im-
plemented in this work are only a sampling of the full
range of possibilities within the framework of Inconsistent,
Performance-bound, and Approximate types.
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