
Pegasus: Tolerating Skewed 
Workloads in Distributed Storage with 

In-Network Coherence Directories

Jialin Li, Jacob Nelson, Ellis Michael, Xin Jin, Dan R. K. Ports



Many real-workloads are
skewed and dynamic



Skewed workloads lead to
load imbalance

popular objects can overload storage servers



Skewed workloads are diverse

• read-heavy
• write-heavy
• read-write mixed

• small objects
• large objects
• combination of both



Two approaches to deal with 
highly skewed workloads

Caching

• Cache popular objects in a 
faster tier

• Caching tier absorbs traffic 
to popular objects

• More uniform load on 
backend storage servers

Selective Replication

• Replicate popular objects 
on multiple servers

• Requests to replicated 
objects can be forwarded 
to any replica

• Distribute load across 
servers



Existing solutions have 
limitations

Caching

non read-heavy 
workloads

fast in-memory 
storage systems

Selective Replication

dynamic replicated 
objects & locations

strong consistency



Our system: Pegasus

highly skewed and 
dynamic workloads

fast in-memory 
storage systems

any object sizes

all read-write ratios

strong consistency

rack-scale 
storage system

programmable
top-of-rack 

switch



Observation: rack as a whole has 
spare processing capacity

A

Rack

A

A

How to route requests to the 

right server? 

How to ensure consistency? 



Pegasus’ approach

selective 
replication

+

in-network 
coherence directory 

Barefoot P4 switch



Coherence directory for replicated data

• Inspired by CPU cache coherence protocols

• Centralized directory that tracks:

• Which objects are replicated

• Location of replicated objects

• Forwards requests to server with spare capacity

• Ensures strong consistency



Coherence 
Directory

Coherence directory illustrated

S0

Replicated
Obj ID

Replica 
Set

A

B

D

S1

S2 S1 S0

S0 S2

S1

S2

A

B

B

B

D

D

READ BWRITE A

A

S2

How to build a directory that can handle all the traffic?

How to ensure consistency with a lightweight protocol?



Implementing coherence directory
in the network

rack-scale 
storage system

• All requests and replies traverse 
the ToR switch

• ToR serves as a central point

• Line-rate packet processing
• No throughput bottleneck
• Zero latency overhead



Pegasus version-based
coherence protocol

• Switch processes all requests

• Switch tracks which servers have the latest copy

• Updates the directory when receiving replies

• How to deal with network asynchrony?

• Use version numbers!



Coherence Directory

Obj ID Replicas

A

B

S1

S2 S1 S0

S0

S1

S2

WRITE A←b
Ver

REPLY A
Ver 4
from S0

S0 A=a

4Next Ver

3

Compl Ver

1

WRITE A←b
Ver 4

5

WRITE A←b
Ver 4

A=b

A=b

REPLY A
Ver 4
from S2

4

Pegasus’ coherence protocol in action

S2

READ A

• Guarantees linearizability

• 1 RTT

• Non-blocking

• No extra invalidation traffic 



Other protocol details

• Adding and removing replicated objects
• Pegasus controller monitors object access frequencies

• Updates coherence directory with most popular objects

• Avoiding duplicate requests
• Server maintains a client table

• Retried write requests forward to the same server

• Server selection policy
• Random

• Weighted round-robin

• Handling server and rack failure
• Multi-rack deployment

• Each rack runs a Pegasus instance

• Chain replication across racks



Coherence directory 
switch implementation

Version 
Number 
Engine

RKey

!RKey

Replica
Set 

Directory

RKey

!RKey

Address 
Rewrite 

Table

Req

Reply

Replicated 
Keys 

Lookup

Pkt EgrStatistics
Engine

Req



Efficient switch implementation

• Switch only stores small metadata

• Only needs to replicate the most popular O(nlogn) objects, 

where n is the number of servers (extension of [1])

• Consumes less than 3.5% of switch SRAM 

[1] Small Cache Big Effect: Provable Load Balancing for Randomly Partitioned Cluster Services.
Bin Fan et al., 2011



Evaluation

• 28 nodes with dual socket Xeon Silver 4114, 48 GB RAM per socket

• Mellanox ConnectX-4 25Gb NICs

• Connected to an Arista 7170-64S (Barefoot Tofino-based) switch

• Open-loop clients, Poisson inter-arrival distribution

• Client requests choose keys following:
• Uniform distribution

• Zipf distribution (skewed workload)

• Measured max throughput subject to a 99%-latency SLO

• Comparison systems:
• Consistent hashing with 16 virtual nodes

• NetCache



0

50

100

150

200

Uniform Zipf-0.9 Zipf-1.0 Zipf-1.2

T
h

ro
u

g
h

p
u

t 
(M

o
p

s
/s

)

Consistent Hashing NetCache Pegasus

Pegasus is effective under 
highly skewed workloads

10x 

throughput 

improvement



Pegasus equally effective under 
different read/write ratios

0

20

40

60

80

100

120

140

160

180

200

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
h

ro
u

g
h

p
u

t 
(M

o
p

s/
s)

Write Ratio

Consistent Hashing

NetCache

Pegasus

throughput drop 

by > 80%

more than 

11x

improvement



Conclusion

• New approach to distributed storage load balancing

• Build a coherence directory directly in ToR switch

• Tracks location and forwards requests for popular objects

• Guarantees strong consistency

• Resulting system: Pegasus

• > 10x throughput improvement compared to existing approaches

• Equally effective under a variety of workloads

• Read-heavy, write-heavy, read-write mixed

• Small and large objects


