
Recovering Shared Objects Without Stable Storage
[Extended Version]∗

Ellis Michael, Dan R. K. Ports, Naveen Kr. Sharma, and Adriana Szekeres
University of Washington

{emichael,drkp,naveenks,aaasz}@cs.washington.edu

Technical Report UW-CSE-17-08-01

August 5, 2017

Abstract

This paper considers the problem of building fault-tolerant shared objects when processes can crash
and recover but lose their persistent state on recovery. This Diskless Crash-Recovery (DCR) model
matches the way many long-lived systems are built. We show that it presents new challenges, as
operations that are recorded at a quorum may not persist after some of the processes in that quorum
crash and then recover.

To address this problem, we introduce the notion of crash-consistent quorums, where no recover-
ies happen during the quorum responses. We show that relying on crash-consistent quorums enables
a recovery procedure that can recover all operations that successfully finished. Crash-consistent quo-
rums can be easily identified using a mechanism we term the crash vector, which tracks the causal
relationship between crashes, recoveries, and other operations.

We apply crash-consistent quorums and crash vectors to build two storage primitives. We give
a new algorithm for multi-writer, multi-reader atomic registers in the DCR model that guarantees
safety under all conditions and termination under a natural condition. It improves on the best prior
protocol for this problem by requiring fewer rounds, fewer nodes to participate in the quorum, and
a less restrictive liveness condition. We also present a more efficient single-writer, single-reader
atomic set—a virtual stable storage abstraction. It can be used to lift any existing algorithm from
the traditional Crash-Recovery model to the DCR model. We examine a specific application, state
machine replication, and show that existing diskless protocols can violate their correctness guarantees,
while ours offers a general and correct solution.

1 Introduction

Today’s distributed systems are key pieces of infrastructure that must remain available even though
the servers that implement them are constantly failing. These systems are long-lived and must be able
to tolerate nodes crashing and rejoining the system. In particular, nodes must be able to rejoin the
system even after losing their disk state, a real concern for large-scale data centers where hard drive
failures are a regular occurrence [7, 36].

∗This document is an extended version of the paper by the same title that appeared at DISC 2017 [31]. It contains
several appendices which did not appear in the conference proceedings. This document also serves as an updated version
of a previous technical report [30].

1

This paper addresses the problem of how to build recoverable shared objects even when processes
lose their entire state. We consider the Diskless Crash-Recovery model: each process in the system
may go down at any time; upon recovery, it loses all state it had before the crash except for its identity.
However, processes can run a recovery protocol to reconstruct their state before deeming themselves
operational again. This model matches the way that many distributed systems are built in practice.

The Diskless Crash-Recovery model (DCR) is more challenging than the traditional Crash-Stop
model (CS) or the Crash-Recovery with Stable Storage model (CRSS). The main challenge is that an
invariant that holds at one process may not hold on that process’s next incarnation after recovery. This
leads to the problem of unstable quorums: it is possible for a majority of processes to acknowledge a
write operation, and yet processes can still subsequently lose that knowledge after crash and recovery.

We provide a general mechanism for building recoverable shared objects in the DCR model.
We show that an operation can be made recoverable once it is stored by a crash-consistent quorum,
which we informally define as one where no recoveries happen during the quorum responses. Crash-
consistent quorums can be efficiently identified using a mechanism called the crash vector: a vector,
maintained by each process, that tracks the latest known incarnation of each process. By including
crash vectors in protocol messages, processes can identify the causal relationship between crash
recoveries and other operations. This makes it possible to discard responses that are not part of a
crash-consistent quorum. We show that this is sufficient to make storage mechanisms recoverable.

The crash-consistent quorum approach is a general strategy for making storage primitives recov-
erable. We give two concrete examples in this paper, both of which are always safe and guarantee
liveness during periods of stability; other storage primitives are also possible:

• First, we build a multi-writer, multi-reader atomic register by extending the well-known ABD
protocol [3] with crash vectors. This improves on the best prior protocol by Konwar et al. [20],
RADON(S)

R , for this problem: it requires fewer rounds (2 rather than 3), requires fewer nodes to
participate in the protocol (a simple majority vs 3/4), and has a less restrictive liveness condition.

• Second, we construct a single-writer, single-reader atomic set, which has weaker semantics yet
permits a more efficient implementation, requiring only a single round of communication for
writes. We refer to this algorithm as virtual stable storage, as it offers consistency semantics
similar to a local disk. We show that the virtual stable storage protocol can be used to transform
any protocol that operates in the traditional CS or CRSS models to one that operates in DCR.

We discuss the application of this work to state machine replication, a widely used distributed
system technique. Recovering from disk failures is an important concern in practice, and recent
replication protocols attempt to support recovery after complete loss of state. Surprisingly, we find
that each of the three such protocols [7, 19, 25] can lose data. We identify a general problem: while
these protocols go to great lengths to ensure that a recovering replica reconstructs the set of operations
it previously processed, they fail to recover critical promises the replica has previously made, e.g.,
to elect a new leader. This is due to the fact that these protocols rely on unstable quorums to persist
these promises. This causes nodes to break important invariants upon recovery, causing the system to
violate safety properties. Our approach provides a correct, general, and efficient solution.

To summarize, this paper makes the following contributions:

• It formalizes a Diskless Crash-Recovery (DCR) failure model in a way that captures the chal-
lenges of long-lived applications (Section 3).

2

• It introduces the notion of crash-consistent quorums and provides two communication primi-
tives for reading from and writing to crash-consistent quorums (Section 4).

• It presents algorithms built on top of our communications primitives for two different shared
objects in the DCR model: an atomic multi-writer, multi-reader register and an atomic single-
writer, single-reader set. The former is a general purpose register which demonstrates the
generality of our approach, while the latter provides a virtual stable storage interface that can
be used to port any protocol in the CRSS model to one for the DCR model (Section 5).

• Finally, it examines prior protocols for state machine replication in the DCR failure model
and demonstrates flaws in these protocols that lead to violations of safety properties. Our two
communication primitives can provide correct solutions (Section 6).

2 Background and Related Work

Static Systems. A static system comprises a fixed, finite set of processes. Fault-tolerant proto-
cols for reliable storage for static systems have been studied extensively in the Crash-Stop (CS) failure
model, where processes that fail never rejoin the system, and the Crash-Recovery with Stable Storage
model (CRSS). In the latter model, processes recover with the same state after a crash. Consensus and
related problems, in particular, have been studied extensively in these settings [8, 15, 34]. In CRSS, a
crashed and recovered node is no different than one which was temporarily unavailable; asynchronous
algorithms that tolerate lossy networks are inherently robust to these types of failures [8].

Our work addresses the challenge of implementing fault-tolerant shared objects in a Diskless
Crash-Recovery (DCR) model, i.e., without stable storage. In particular, we demonstrate a communi-
cation primitive which persists quorum knowledge even in the presence of diskless recoveries, in the
spirit of [3, 13].

Prior work on fault-tolerant shared objects and consensus without stable storage generally requires
some subset of the processes to never fail [1, 11]. Aguilera et al. [1] showed an impossibility result
for a crash-recovery model: even with certain synchrony assumptions, consensus cannot be solved
without at least one process that never crashes. The main differentiator between that work and this
paper is that in their model, the states of processes were binary—either “up” or “down.” We overcome
this limitation by adding an extra “recovering” state. As long as the number of processes which are
“down” or “recovering” at any given time is bounded, certain problems can be solved even without
processes that never fail. This addition is especially well suited to capturing the needs of long-lived
applications in which processes occasionally fail and need to rebuild state.

Recently, Konwar et al. [20] presented a set of algorithms for implementing an atomic multi-
writer, multi-reader (MWMR) register in a model similar to ours. We generalize and improve on this
work using new primitives for crash-consistent quorums. Our techniques are applicable to other forms
of shared objects as well, and our MWMR register is more efficient: it requires one fewer phase and
a simple majority quorum (vs 3/4). Like that work, we also draw on the ABD protocol [3] for our
implementation of an atomic MWMR register. We also draw on the network stability models in [20]
to characterize the conditions under which our shared objects guarantee progress.

Recovering without disk state is an important practical concern for real systems. Several recent
practical state machine replication systems [7, 19, 25] incorporate ad hoc recovery mechanisms for
nodes to recover from total disk loss. The common intuition behind these approaches is that a

3

synchronous write to disk can be replaced with a write to a quorum of other nodes, recovering after a
failure by performing a quorum read. However, we show that these protocols are not correct; they can
lose data in certain failure scenarios. A more recent design, Replacement [16], provides a mechanism
for replacing failed processes. Like our work and the epoch vectors in JPaxos [19], it draws on
concepts like version vectors [35] and vector clocks [9] to determine the causal dependencies between
replacements and other operations. We build on these techniques to provide generic communication
primitives in DCR.

Dynamic Systems. In a dynamic setting, processes may leave or join the system at will. At any
given time, the system membership consists of the processes that have joined and have not yet left
the system. Although we consider a static system, DCR may be viewed as a dynamic system with a
finite concurrency level [29], i.e, where there is a finite bound on the maximum number of processes
that are simultaneously active, over all runs. Here, a recovering process without state is equivalent to
a newly joined process, and a process which crashes is equivalent to a process that leaves the system
without an explicit announcement .

Many dynamic systems implement reconfiguration protocols [2, 10, 24–27, 38]. Reconfiguration
allows one to change the set of members allowed to participate in the computation. This process
allows both adding new processes and removing processes from the system. Reconfiguration is a
more general problem than recovery: it can be used to handle disk failure by introducing a recovering
node without state as a new member and removing its previous incarnation. However, general recon-
figuration protocols are a blunt instrument, as they must be able to handle completely changing the
membership to a disjoint set of processes (potentially even with a different size). As a result, these
protocols are costly. Most use consensus to agree on the order of reconfigurations, which delays the
processing of concurrent operations [32]. DynaStore [2] is the first proposal which does not require
consensus, but reconfigurations can still delay R/W operations [32]. SmartMerge [17] improves on
DynaStore by offering a more expressive reconfiguration interface. Recovery is a special case of
reconfiguration, where each recovering process replaces, and has the same identity as, a previously
crashed process. As a result, it permits more efficient solutions.

Other protocols implement shared registers and other storage primitives in churn-prone sys-
tems [4–6, 18]. In these systems, processes are constantly joining and leaving the system, but at a
bounded rate. These protocols remain safe only when churn remains within the specified bound, in
contrast to our work which is always safe. Most of these protocols also require synchrony assumptions
for correctness; our protocols remain correct in a fully asynchronous system. However, under these
assumptions they are able to provide liveness guarantees even during constant churn.

3 System Model

We begin by defining our failure model: Diskless Crash-Recovery (DCR), a variant of the classic
Crash-Recovery model where processes lose their entire state upon crashing.

We consider an asynchronous distributed system which consists of a fixed set of n processes,
Π. Each process has a unique name (identifier) of some kind; we assume processes are numbered
1, . . . ,n for simplicity. Each process executes a protocol (formally, it is an I/O automaton [28]) while
it is up. An execution of a protocol proceeds in discrete time steps, numbered with N, starting at t = 0.
At each step, at most one process either processes an input action, processes a message, crashes, or

4

restarts. If it crashes, the process stops receiving messages and input actions, loses its state, and is
considered DOWN. A process that is DOWN can restart and transition back to the UP state. We make
the following assumptions about a process that restarts: (1) it knows it is restarting, (2) it knows
its unique name and the names of the other processes in the system (i.e., this information survives
crashes), and (3) it can obtain an incarnation ID that is distinct from all the ones that it previously
obtained. Note that the incarnation ID need only be unique among different incarnations of a specific
process, not the entire system. These are reasonable assumptions to make for real-world systems: (1)
and (2) are fixed for a given deployment, and (3) can be obtained, for example, from a source of
randomness or the local processor clock.

Processes are connected by an asynchronous network. Messages can be duplicated a finite number
of times or reordered arbitrarily – but not modified – by the network. We assume that if an incarnation
of a process remains UP, sends a message, and an incarnation of the destination process stays UP long
enough, that message will eventually be delivered.1

The unique incarnation ID makes it possible to distinguish different incarnations of the same
process. Without unique incarnation IDs, processes are vulnerable to “replay attacks:”

Theorem 1. Any state reached by a process that has crashed, restarted, and taken steps without
receiving an input action or crashing again will always be reachable by that process.

Proof. Suppose process p has crashed, restarted, and taken some number of steps without crashing
or receiving an input action. That is, suppose that after it restarted, p received some (possibly empty)
sequence of messages, M . Because p is an I/O automaton without access to randomness or unique
incarnation IDs, anytime p crashes and restarts, it restarts into the exact same state. Furthermore, if
p crashes, restarts, and receives the same sequence of messages, M , having been duplicated by the
network, p will always end up in the same state.

A corollary to Theorem 1 is that any protocol in the DCR model without unique incarnation IDs
satisfying the safety properties of consensus—or even a simple shared object such as a register—can
reach a state from which terminating states are not reachable (i.e., a state of deadlock). If all processes
crash and recover as in Theorem 1 before deciding a value or receiving a write, they can always return
to this earlier state, so the protocol cannot safely make progress.

For simplicity of exposition, we assume that the incarnation ID increases monotonically. Ap-
pendix A explains how to eliminate this requirement.

A restarting process must recover parts of its state. To do so, it runs a distinct recovery protocol.
This protocol can communicate with other processes to recover previous state. Once the recovery
protocol terminates, the process declares recovery complete and resumes execution of its normal
protocol. We describe a process that is UP as RECOVERING if it is running its recovery protocol and
OPERATIONAL when it is running the initial automaton. A protocol in this model should satisfy recov-
ery termination: a recovering process eventually completes recovery and becomes OPERATIONAL, as
long as it does not crash again in the meantime. This precludes vacuous solutions where recovering
process never again participate in the normal protocol.

Using a separate recovery protocol matches the design of existing protocols like Viewstamped
Replication [25]. Importantly, the distinction between RECOVERING and OPERATIONAL makes it

1This model is equivalent to one in which the network can drop any message a finite number of times, with the added
stipulation that processes resend messages until they are acknowledged.

5

possible to state failure bounds in terms of the number of OPERATIONAL processes, e.g., that fewer
than half of the processes can be either DOWN or RECOVERING at any moment. This circumvents
Aguilera et al.’s impossibility result for consensus [1], which does not make such a distinction (i.e.,
restarting processes are immediately considered OPERATIONAL). We show later how to build a stable
storage abstraction that can adapt consensus-based protocols from CRSS to DCR; the resulting
protocols are safe, live, and (unlike [1]) do not require certain processes to never crash.

4 Achieving Crash-Consistent Quorums

Making shared objects recoverable in the DCR model requires a new type of quorum to capture
the idea of persistent, recoverable knowledge. A simple quorum does not suffice. We demonstrate
the problem through a simple straw-man example, and introduce the concepts of crash-consistent
quorums and crash vectors to solve the problem. We use these to build generic quorum communication
and recovery primitives.

4.1 Unstable Quorums: Intuition

Consider an intentionally simple example: a fault-tolerant safe register that supports a single writer
and multiple readers. A safe register [22] is the weakest form of register, as the behavior of READ
operations is only defined when there are no concurrent WRITEs. We further constrain the problem
by allowing the writer to only ever execute one WRITE operation. That is, the only safety requirement
is that once the WRITE completes, all subsequent READs that return must return the value written.
READs should always return as long as a majority of processes are OPERATIONAL at any time.

In the Crash-Stop model, a trivial quorum protocol suffices: WRITE(val) broadcasts val to all
processes and waits for acknowledgments from a quorum. Here, we consider majority quorums:

Definition 1. A quorum Q is a set of processes such that Q ∈Q = {Q : Q ∈ 2Π∧|Q|> n/2}.

A subsequent READ would then be implemented by reading from a quorum. The quorum inter-
section property (i.e., ∀Q1,Q2 ∈Q Q1∩Q2 6= {}) guarantees that at least one process will return
val for a READ that happens after the WRITE. It is easy to extend this protocol to the CRSS model
simply by having each process log val to disk before replying to a WRITE.

Could we use this same quorum protocol in our DCR model, where processes that crash recover
without stable storage, by augmenting it with a recovery protocol that satisfies recovery termination?
In fact, for this particular protocol, there is no recovery protocol that both guarantees the safety
requirement and recovery termination – even if there is a majority of processes which are OPERA-
TIONAL at any instant! In order to tolerate the crashes of a minority of processes and satisfy recovery
termination, any recovery protocol must be able to proceed after communicating with only a simple
majority of processes. However, if a process crashes in the middle of the WRITE procedure—after
acknowledging val—it may recover before a majority of processes have received val. No recovery
procedure that communicates only with this quorum of processes can cause the process to relearn
val.

We term the resulting situation an unstable quorum: the WRITE operation received responses
from a quorum, and yet by the time it completes there may no longer exist a majority of processes
that know val. It is thus possible to form a quorum of processes that either acknowledged val but then

6

lost it during recovery, or never received the write request (delayed by the network). A subsequent
READ could fail by reading from such a quorum.

Although this is a simple example, many important systems suffer from precisely this problem of
unstable quorums. We show in Section 6 that essentially this scenario can cause three different state
machine replication protocols to lose important pieces of state.

4.2 Crash-Consistent Quorums

We can avoid this problem – both for the straw-man problem above and in the general case – by
relying not just on simple quorums of responses but crash-consistent ones.

Crash Consistency. We informally define a crash-consistent quorum to be one where no re-
coveries of processes in the quorum happen during the quorum responses. More precisely:

Definition 2. Let E be the set of all events in an execution. A set of events, E ⊆ E , is crash-consistent
if ∀e1,e2 ∈ E there is no e3 ∈ E that takes place at a later incarnation of the same process as e1 such
that e3→ e2. Here,→ represents Lamport’s happens-before relation [21].

In Section 4.3, we show how to build recoverable primitives using crash-consistent quorums, in
which all quorum replies (i.e. the message send events at a quorum) are crash-consistent.

Crash Vectors. How does a process acquire a crash-consistent quorum of responses? The
mechanism that allows us to ensure a crash-consistent quorum is the crash vector. This is a vector
that contains, for each process, its latest known incarnation ID. Like a version vector, processes
attach their crash vector to the relevant protocol messages and use incoming messages to update their
crash vector. The crash vector thus tracks the causal relationship between crash recoveries and other
operations. When acquiring a quorum on a WRITE operation, we check whether any of the crash
vectors are inconsistent with each other, indicating that a recovery may have happened concurrently
with one of the responses. We then discard any responses from previous incarnations of the recovering
process, ensuring a crash-consistent quorum, and thus avoiding the aforementioned problem.

4.3 Communication Primitives in DCR

We now describe in detail two generic quorum communication primitives, one of which acquires
a crash-consistent quorum, as well as a generic recovery procedure. These primitives require their
users to implement an abstract interface: READ-STATE, which returns a representation of the state of
the shared object; UPDATE-STATE, which alters the current state with a specific value; and REBUILD-
STATE, which is called during recovery and takes a set of state representations and combines them.

The ACQUIRE-QUORUM primitive writes a value to a crash-consistent quorum (i.e., using the
UPDATE-STATE interface) and returns the latest state. The READ-QUORUM primitive returns a
fresh—but possibly inconsistent—snapshot of the state as maintained at a quorum of processes. If
ACQUIRE-QUORUM(val) succeeds, then any subsequent READ-QUORUM will return at least one
response from a process that knows (i.e., has previously updated its state with) val.

2This new ACQUIRE message has the same c and val as before but will have an updated crash vector. Sending it is
necessary for liveness.

7

Algorithm 1 Communications primitives

Permanent Local State:
n ∈ N+ . Number of processes
i ∈ [1, . . . ,n] . Process number

Volatile Local State:
v← [⊥ for i ∈ [1, . . . ,n]] . Crash vector
op← f alse . Operational flag
R←{} . Reply set
c← 0 . Message number

1: upon SYSTEM-INITIALIZE

2: op← true
3: end upon

4: upon RECOVER

5: v[i]← READ-CLOCK

6: Σ← ACQUIRE-QUORUM(null)
7: REBUILD-STATE(Σ)
8: op← true
9: end upon

10: function ACQUIRE-QUORUM(val)
11: R←{}
12: c← c+1
13: m← 〈ACQUIRE〉
14: m.c← c
15: m.val← val
16: for all j ∈ [1, . . . ,n] do
17: SEND-MESSAGE(m, j)
18: end for
19: Wait until |R|> n/2
20: return {m.s : m ∈ R}
21: end function

22: function READ-QUORUM

23: R←{}
24: c← c+1
25: m← 〈READ〉
26: m.c← c
27: for all j ∈ [1, . . . ,n] do
28: SEND-MESSAGE(m, j)
29: end for
30: Wait until |R|> n/2
31: return {m.s : m ∈ R}
32: end function

33: function SEND-MESSAGE(m, j)
34: m. f ← i . Sender
35: m.v← v
36: Send m to process j
37: end function

38: upon receiving 〈ACQUIRE〉, m
39: guard: op
40: v← vtm.v
41: m′← 〈ACQUIRE-REP〉
42: if m.val 6= null then
43: UPDATE-STATE(m.val)
44: end if
45: m′.s← READ-STATE

46: m′.c← m.c
47: SEND-MESSAGE(m′, m. f)
48: end upon

49: upon receiving 〈ACQUIRE-REP〉, m
50: guard: m.v[i] = v[i]∧ c = m.c
51: v← vtm.v
52: Add m to R

. Discard inconsistent, duplicate replies
53: while ∃m′ ∈ R where
54: m′.v[m′. f]< v[m′. f] do
55: Remove m′ from R
56: Resend2〈ACQUIRE〉 message to m′. f
57: end while
58: while ∃m′,m′′ ∈ R where
59: m′. f = m′′. f ∧m′ 6= m′′ do
60: Remove m′ from R
61: end while
62: end upon
63: upon receiving 〈READ〉, m
64: guard: op
65: v← vtm.v
66: m′← 〈READ-REP〉
67: m′.s← READ-STATE

68: m′.c← m.c
69: SEND-MESSAGE(m′, m. f)
70: end upon

71: upon receiving 〈READ-REP〉, m
72: guard: m.v[i] = v[i]∧ c = m.c
73: v← vtm.v
74: Add m to R
75: end upon

The detailed protocol implementing the two primitives and the recovery procedure is presented
as pseudo-code in Algorithm 1. We present the algorithm using a modified I/O automaton notation.
In our protocol, procedures are input actions that can be invoked at any time (e.g., in a higher

8

level protocol); functions are simple methods; and upon clauses specify how processes handle
external events (i.e., messages, system initialization, and recovery). We use guards to prevent actions
from being activated under certain conditions. If the guard of a message handler or procedure is
not satisfied, no action is taken, and the message is not consumed (i.e., it remains in the network
undelivered).

Each of the n process in Π maintains a crash vector, v, with one entry for each process in the
system. Entry i in this vector tracks the latest known incarnation ID of process i. During an incarnation,
a process numbers its ACQUIRE and READ messages using the local variable c to match messages
with replies. When a process recovers, it gets a new value from its local, monotonic clock and
updates its incarnation ID in its own vector. When the recovery procedure ends, the process becomes
OPERATIONAL and signals this through the op flag. A process’s crash vector is updated whenever a
process learns about a newer incarnation of another process. Crash vectors are partially ordered, and
a join operation, denoted t, is defined over vectors, where (v1t v2)[i] = max(v1[i], v2[i]). Initially,
each process’s crash vector is [⊥, . . . ,⊥], where ⊥ is some value smaller than any incarnation ID.

The ACQUIRE-QUORUM function handles both writing values and recovering. ACQUIRE-
QUORUM ensures the persistence of both the process’s current crash vector—in particular the pro-
cess’s own incarnation ID in the vector—as well as the value to be written, val. It provides these
guarantees by collecting responses from a quorum of processes and ensuring that those responses are
crash-consistent. It uses crash vectors to detect when any process that previously replied could have
crashed and thus could have “forgotten” the written value.

4.4 Correctness

We show that our primitives provide the same safety properties as writing and reading to simple
quorums in the Crash-Stop model. First, we formally define quorum knowledge in the DCR context.

Definition 3 (Stable Properties). A predicate on the history of an incarnation of a process (i.e., the
sequence of events it has processed) is a stable property if it is monotonic (i.e., X being true of history
h implies that X is true of any history with h as a prefix).

Definition 4. If stable property X is true of some incarnation of a process, p, we say that incarnation
of p knows X.

Definition 5 (Quorum Knowledge). We say that a quorum Q knows stable property X if, for all
processes p ∈ Q, one of the following holds: (1) p is DOWN, (2) p is OPERATIONAL and knows X, or
(3) p is RECOVERING and either already knows X or will know X if and when it finishes recovery.

In our analysis of Algorithm 1, we are concerned with knowledge of two types of stable properties:
knowledge of values and knowledge of incarnation IDs. An incarnation of a process knows value val
if it has either executed UPDATE-STATE(val) or executed REBUILD-STATE with an ACQUIRE-REP

message in the reply set sent by a process which knew val. Knowledge of a process’s incarnation ID,
i, is the stable property of having an entry in a crash vector for that process greater than or equal to i.

Next, we define crash-consistency on ACQUIRE-REP messages stamped with crash vectors.

Definition 6 (Crash Consistency). A set of ACQUIRE-REP messages R is crash-consistent if ∀s1,s2 ∈
R s1.v[s2. f]≤ s2.v[s2. f].

9

Note that Definition 6, phrased in terms of crash vectors, is equivalent to the sending events of
the ACQUIRE-REP messages being crash-consistent according to Definition 2.

Definition 7 (Quorum Promise). We say that a crash-consistent set of ACQUIRE-REP messages
constitutes a quorum promise for stable property X if the set of senders of those messages is a
quorum, and each sender knew X when it sent the message.

Definition 8. If process p sent one of the ACQUIRE-REP message belonging to a quorum promise
received by some process, we say that p participated in that quorum promise.

The post-condition of the loop on line 53 guarantees the crash-consistency of the reply set by
discarding any inconsistent messages; the next loop guarantees that there is at most one message from
each process in the reply set. Therefore, the termination of ACQUIRE-QUORUM (line 10) implies that
the process has received a quorum promise showing that val was written and that every participant
had a crash vector greater than or equal to its own vector when it sent the ACQUIRE message. This
implies that whenever a process finishes recovery, it must have received a quorum promise showing
that the participants in its recovery had that process’s latest incarnation ID in their crash vectors.

Unlike having a stable property, that a process participated in a quorum promise holds across
failures and recoveries. That is, we say that a process, not a specific incarnation of that process,
participated in a quorum promise. Also note that only OPERATIONAL processes ever participate in a
quorum promise, guaranteed by the guard on the ACQUIRE message handler.

4.4.1 Safety

Finally, we are ready to state the main safety properties of our generic read/write primitives.

Theorem 2 (Persistence of Quorum Knowledge). If at time t, some quorum, Q, knows stable property
X, then for all times t ′ ≥ t, Q knows X.

Proof. We prove by strong induction on t ′ that the following invariant, I, holds for all t ′ ≥ t: For all
p in Q: (1) p is OPERATIONAL and knows X , (2) p is RECOVERING, or (3) p is DOWN. In the base
case at time t, Q knows X by assumption, so I holds.

Now, assuming I holds at all times t ′−1≥ t, we show that I holds at time t ′. The only step any
process p ∈ Q could take to falsify I is finishing recovery. If recovery began at or before time t, then
because Q knew X , p must know X now that it has finished recovering. Otherwise, if it began after
time t, then p must have received some set of ACQUIRE-REP messages from a quorum, all of which
were sent after time t. By quorum intersection, one of these messages must have come from some
process in Q. Call this process q. Since q’s ACQUIRE-REP message, m, was sent after time t and
before t ′, by the induction hypothesis, q must have known X when it sent m. Therefore, p must know
X upon finishing recovery since it updates its crash vector and rebuilds its state using m.

Since I holds for all times t ′ ≥ t, this implies the theorem.

Theorem 3 (Acquisition of Quorum Knowledge). If process p receives a quorum promise for stable
property X from quorum Q, then Q knows X.

Proof. We again prove this theorem by (strong) induction, showing that the following invariant, I,
holds for all times, t:

10

1. If a process receives a quorum promise for stable property X from quorum Q, then Q knows X .

2. If process p ever participated in a quorum promise for X at or before time t, and p is OPERA-
TIONAL, then p knows X .

In the base case, I holds vacuously at t = 0. We show that if I holds at time t−1, it holds at time t:

First, we consider part 1 of I. If p has received a quorum promise, R, from quorum Q for X ,
then because R is crash-consistent, we know that at the time they participated in R no process in
Q had participated in the recovery3 of any later incarnation of any other process in Q than the one
that participated in R. If they had, then by the induction hypothesis(which we can apply as their
participation happened before time t) , such a process would have known the recovered process’s new
incarnation ID when it participated in R, and R would not have been crash-consistent.

Given that fact, we will use a secondary induction to show that for all times, t ′, all of the processes
in Q either: (1) haven’t yet participated in R, (2) are DOWN, (3) are RECOVERING, or (4) are OPER-
ATIONAL and know X . In the base case, no process in Q has yet participated in R. For the inductive
step, note that the only step any process q could take that would falsify our invariant is transitioning
from RECOVERING to OPERATIONAL after having participated in R. If q finished recovering, it must
have received a quorum promise showing that the senders knew its new incarnation ID. By quorum
intersection, at least one of these came from some process r ∈ Q. We already know r couldn’t have
participated in q’s recovery before participating in R. So by the induction hypothesis, r knew X at the
time it participated in q’s recovery. Because knowledge of values and incarnation IDs is transferred
through ACQUIRE-REP messages, q knows X , completing this secondary induction.

Finally, we know that since p has received R at time t, all of the process in Q have already
participated in R, so all of the processes in Q are either DOWN, RECOVERING (and will know X upon
finishing recovery), or are OPERATIONAL and know X . Therefore, Q knows X , and this completes
the proof that part 1 of I holds at time t.

Now, we consider part 2 of I. Suppose, for the sake of contradiction, that p is OPERATIONAL

at time t and doesn’t know X , but participated in quorum promise R for X at or before time t. Let
Q be the set of processes participating in R. Since p does not know X , p must have crashed and
recovered since participating in R. Consider p’s most recent recovery, and let the quorum promise it
received showing that the senders knew p’s new incarnation ID (or a greater one) be R′. Let the set of
participants in R′ be Q′. By quorum intersection, there exists some r ∈ Q∩Q′.

It must be the case that r participated in R′ before R; otherwise by induction, when r participated
in R′, it would have known X , and then transferred that knowledge to the current incarnation of p
(at time t). r couldn’t have participated in R before time t, because then by part 2 of I, it would have
known p’s latest incarnation ID when participating in R, violating the consistency of R. However, r
cannot participate in R at or after time t, either. Because p has received a quorum promise for its new
incarnation ID at or before time t, by part 1 of I, Q′ knows p’s new incarnation ID. By Theorem 2,
Q′ continues to know this at all later times. Because r ∈ Q′, it must know p’s incarnation ID, and
thus cannot participate in R without violating its crash-consistency. This contradicts the fact that r
participates in R and completes the proof that part 2 holds at time t.

3That is, participated in the quorum promise needed by a recovering process, showing that the senders knew the
recovering process’s new incarnation ID.

11

Since ACQUIRE-QUORUM(val) obtains a quorum promise for val, Theorem 3 implies quorum
knowledge of val, and Theorem 2 shows that that knowledge will persist for all future time, subse-
quent ACQUIRE-QUORUMs and READ-QUORUMs will get a response from a process which knows
val.

4.4.2 Liveness

ACQUIRE-QUORUM and READ-QUORUM terminate if there is some quorum of processes that all
remain OPERATIONAL for a sufficient period of time.4 This is easy to see since a writing or recovering
process will eventually get an ACQUIRE-REP from each of these OPERATIONAL processes, and
those replies must be crash-consistent. Note that the termination of ACQUIRE-QUORUM implies
the termination of the recovery procedure, RECOVER. Therefore, the same liveness conditions are
required for ACQUIRE-QUORUM and for recovery termination.

We define a sufficient liveness condition, LC, below. It is a slightly weaker version of the network
stability condition N2 from [20]: the period in which processes must remain OPERATIONAL is shorter.

Definition 9 (Liveness Condition (LC)). Consider a process p executing either the ACQUIRE-
QUORUM or READ-QUORUM function, φ , and consider the following statements: (1) There exists
a quorum of processes, Q, all of which consume their respective messages sent from φ . (2) Every
process in Q either (a) remains OPERATIONAL during the interval [T1,T2], where T1 is the point in
time at which φ was invoked and T2 the earliest point in time at which p completes the consumption
of all the responses sent by the processes in Q or (b) becomes DOWN and remains DOWN during the
same interval after p consumed its response. If these two statements are true for every invocation of
a ACQUIRE-QUORUM or READ-QUORUM function, then we say that LC is satisfied.

Our protocol implementing the group communication primitives is live if LC is satisfied. For
LC to be satisfied, it is necessary that at most a minority of processes are DOWN at any given time.
Otherwise, no process can ever receive replies from a quorum again.5

5 Recoverable Shared Objects in DCR

In this section we demonstrate the benefits of our quorum communication primitives for DCR: gen-
erality and efficiency. We present protocols for two different shared objects: a multi-writer, multi-
reader (MWMR) atomic register (Algorithm 2) and a single-writer, single-reader (SWSR) atomic
set(Algorithm 3). In both protocols, READ and WRITE are intended to be invoked serially.

The first protocol implements a shared, fault-tolerant MWMR atomic register in DCR. It is more
efficient and has better liveness conditions than prior work. The second protocol implements a weaker
abstraction—a shared, fault-tolerant SWSR atomic set. We use this set as a basic storage primitive to
provide processes with access to their own virtual stable storage (VSS), an emulation of a local disk.
This enables easy migration of protocols to DCR.

4We assume that the application-provided READ-STATE, UPDATE-STATE, and REBUILD-STATE functions execute
entirely locally and do not block.

5In fact, this is true if there is ever a majority of processes that are DOWN or RECOVERING, unless there is a set of
messages currently in the network that will allow some of them to complete recovery.

12

Algorithm 2 Multi-writer, multi-reader atomic register in Diskless Crash-Recovery

Volatile Local State:
(t,d)← (t0,d0) . Value of register

1: procedure WRITE(dnew)
2: guard: op

. Get latest timestamp
3: Σ← READ-QUORUM

4: (tmax,dmax)←max(Σ)
. Write value

5: tnew← (tmax.z+1, i,v[i])
6: ACQUIRE-QUORUM((tnew,dnew))
7: end procedure

8: procedure READ

9: guard: op
. Get latest register value

10: Σ← READ-QUORUM

11: (tmax,dmax)←max(Σ)
. Write latest register value

12: ACQUIRE-QUORUM((tmax,dmax))
13: return dmax
14: end procedure

15: function UPDATE-STATE(val)
16: if val.t > t then
17: (t,d)← val
18: end if
19: end function

20: function READ-STATE

21: return (t,d)
22: end function

23: function REBUILD-STATE(Σ)
24: (t,d)←max(Σ)
25: end function

5.1 Multi-writer, Multi-reader Atomic Register

We present a protocol for implementing a fault-tolerant, recoverable multi-writer, multi-reader
(MWMR) atomic register in DCR, which guarantees the linearizability of READs and WRITEs [22].
Our protocol is similar to the ABD protocol [3] but augments it with a recovery procedure. Its pseudo-
code is presented in Algorithm 2. Timestamps are used for version control, as in the original protocol.
A timestamp is defined as a triple (z, i,v[i]), where z ∈ N, i ∈ [1..n] is the ID of the writing process,
and v[i] is the incarnation ID of that process. Timestamps are ordered lexicographically. By replacing
each quorum write phase in the original protocol with our ACQUIRE-QUORUM function and each
quorum read phase with READ-QUORUM, we guarantee that every successful write phase is visible
to subsequent read phases, despite concurrent crashes and recoveries, thus preserving safety in DCR.
The REBUILD-STATE function reconstructs a value of the register at least as new as the one of the
last successful write that finished before the process crashed.

Discussion. The most recent protocol for fault-tolerant, recoverable, MWMR atomic registers
is RADON [20]. The always-safe version of RADON, RADON(S)

R , introduces an additional commu-
nication phase after each quorum write to check whether any of the processes that acknowledged the
write crashed in the meantime. This increases the latency of both the READ and WRITE procedures.
Also, our liveness conditions are weaker: our protocol is live if any majority of processes do not crash
for a sufficient period of time, while RADON(S)

R requires a supermajority (3/4) of processes to not
crash.

13

Algorithm 3 Single writer, single reader atomic set in Diskless Crash-Recovery

Permanent Local State:
owner . Owner of set flag

Volatile Local State:
S←{} . Local set

1: procedure WRITE(s)
2: guard: op∧owner
3: ACQUIRE-QUORUM({s})
4: S← S∪{s}
5: end procedure

6: procedure READ

7: guard: op∧owner
8: return S
9: end procedure

10: function UPDATE-STATE(val)
11: S← S∪ val
12: end function

13: function READ-STATE

14: return S
15: end function

16: function REBUILD-STATE(Σ)
17: ACQUIRE-QUORUM(Σ)
18: S←

⋃
Σ

19: end function

5.2 Virtual Stable Storage

Algorithm 3 presents a protocol for a fault-tolerant, recoverable, SWSR set, where the reader is the
same as the writer. It guarantees that the values written by completed WRITEs and those returned
in READs are returned in subsequent READs. Given the group communication primitives, its imple-
mentation is straightforward; the only additional detail is that values read during recovery should be
written back to ensure atomicity (line 17).

Discussion. We can use this set to provide a virtual stable storage abstraction. It is well known
that any correct protocol in CS can be transformed into a correct protocol in the CRSS model by
having processes write every message they receive (or the analogous state update) to their local disk
before sending a reply. By equipping each process with VSS, any correct protocol in the CRSS
model can then be converted into a safe protocol in the DCR model, wherein processes write to
crash-consistent quorums instead of stable storage.

This conversion method, while general, might not be the most efficient for a particular problem;
more efficient implementations could utilize the communications primitives in Algorithm 1 directly.

6 Recoverable Replicated State Machines in DCR

We further extend our study of DCR to another specific problem: state machine replication (SMR).
SMR is a classic approach for building fault-tolerant services [21, 37] that calls for the service to be
modeled as a deterministic state machine, replicated over a group of replicas. System correctness
requires each replica to execute the same set of operations in the same order, even as replicas and
network links fail. This is typically achieved using a consensus-based replication protocol such as
Multi-Paxos [23] or Viewstamped Replication [25, 33] to establish a global order of client requests.
Once consensus has been achieved, the replicas execute the request and respond to the client.

We examined three diskless recovery protocols for SMR: Viewstamped Replication [25], Paxos
Made Live [7], and JPaxos [19]. We found that each of these protocols suffers from the problem
illustrated in the example at the beginning of Section 4: they use regular quorums of responses

14

(instead of crash-consistent ones) when persisting critical data, which could violate their invariants.
This can lead to operations being lost, or different operations being executed at different replicas,
both serious correctness violations. We provide here brief explanations of the problems in each of
these protocols. For more details on how the protocols work and complete traces, see Appendix B.

Viewstamped Replication [33] is the first consensus-based SMR protocol. The original version of
the protocol requires a single write to disk, during a view change. A recent VR variant [25] replaces
the write to disk with a write to a quorum of replicas, in an attempt to eliminate the necessity for disks.
However, it uses simple quorum responses, allowing the recovering replica to violate an important
invariant: once a replica committed to take part in a new view, it will never operate in a lower view.
As a result, an operation can complete successfully and then be lost after a view change.

Paxos Made Live [7] is Google’s Multi-Paxos implementation. To handle corrupted disks, it lets
a replica rejoin the system without its previous state and runs an (unspecified) recovery protocol
to restore the application state. The replica must then wait to observe a full instance of successful
consensus before participating. This successfully prevents the replica from accepting multiple values
for the same instance (e.g., one before and one after the crash). However, it does not prevent the
replica from sending different promises (i.e., leader change commitments) to potential new leaders,
which can lead to a new leader deciding a new value for a prior successful instance of consensus.

JPaxos [19], a hybrid of Multi-Paxos and VR, provides a variety of deployment options, including
a diskless one. Nodes in JPaxos maintain an epoch vector that tracks which nodes have crashed and
recovered to discard lost promises made by prior incarnations of recovered nodes. However, like VR
and PML, this approach encounters the same problem at a different level: certain failures during node
recovery can cause the system to lose state and violate safety properties.

All of these protocols can be correctly migrated to DCR, with little effort, using VSS write
operations, as explained in Section 5.2. This approach is straightforward, efficient, and requires no
invasive protocol modifications. As an example, we implemented the Viewstamped Replication using
VSS. We evaluate this protocol experimentally in Appendix C, showing that it efficiently handles
recovery.

7 Conclusion

This paper examined the Diskless Crash-Recovery model, where process can crash and recover but
lose their state. We show how to provide persistence guarantees in this model using new quorum
primitives that write to and read from crash-consistent quorums. These general primitives allow us to
construct shared objects in the DCR model. In particular, we show a MWMR atomic register protocol
requiring fewer communication rounds and weaker liveness assumptions than the best prior work. We
also build a SWSR atomic set that can be used to provide each process with virtual stable storage,
which can be used to easily migrate any protocol from traditional Crash-Recovery models to DCR.

15

Acknowledgments

We thank Marcos K. Aguilera for his comments on early drafts of this work, as well as Irene Zhang,
the anonymous reviewers, and Jennifer L. Welch for their helpful feedback. This material is based
upon work supported by the National Science Foundation under award CNS-1615102 and a Graduate
Research Fellowship, and by gifts from Google and VMware.

References

[1] M. K. Aguilera, W. Chen, and S. Toueg. Failure detection and consensus in the crash-recovery
model. In Proc. of DISC, 1998.

[2] M. K. Aguilera, I. Keidar, D. Malkhi, and A. Shraer. Dynamic atomic storage without consensus.
J. ACM, 58(2):7:1–7:32, Apr. 2011.

[3] H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory robustly in message-passing systems. J.
of the ACM, 42(1):124–142, Jan. 1995.

[4] H. Attiya, H. C. Chung, F. Ellen, S. Kumar, and J. L. Welch. Simulating a shared register in an
asynchronous system that never stops changing. In Proc. of DISC, 2015.

[5] R. Baldoni, S. Bonomi, A.-M. Kermarrec, and M. Raynal. Implementing a register in a dynamic
distributed system. In Proc. of ICDCS, 2009.

[6] R. Baldoni, S. Bonomi, and M. Raynal. Implementing a regular register in an eventually
synchronous distributed system prone to continuous churn. IEEE Trans. Parallel Distrib. Syst.,
23(1):102–109, Jan. 2012.

[7] T. D. Chandra, R. Griesemer, and J. Redstone. Paxos made live: An engineering perspective. In
Proc. of PODC, 2007.

[8] D. Dolev, R. Friedman, I. Keidar, and D. Malkhi. Failure detectors in omission failure environ-
ments. In Proc. of PODC, 1997.

[9] C. J. Fidge. Timestamps in message-passing systems that preserve the partial ordering. In Proc.
of ACSC, 1988.

[10] E. Gafni and D. Malkhi. Elastic configuration maintenance via a parsimonious speculating
snapshot solution. In Proc. of DISC, 2015.

[11] R. Guerraoui, R. R. Levy, B. Pochon, and J. Pugh. The collective memory of amnesic processes.
ACM Trans. Algorithms, 4(1):12:1–12:31, Mar. 2008.

[12] H. S. Gunawi, T. Do, A. Laksono, T. L. Mingzhe Hao, J. F. Lukman, and R. O. Suminto. What
bugs live in the cloud? A study of issues in scalable distributed systems. USENIX ;login:, Aug.
2015.

[13] J. Y. Halpern and Y. Moses. Knowledge and common knowledge in a distributed environment.
In Proc. of PODC, 1984.

16

[14] M. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent objects.
ACM Trans. Program. Lang. Syst., 1990.

[15] M. Hurfin, A. Mostéfaoui, and M. Raynal. Consensus in asynchronous systems where processes
can crash and recover. In Proc. of SRDS, 1998.

[16] L. Jehl, T. E. Lea, and H. Meling. Replacement: Decentralized failure handling for replicated
state machines. In Proc. of SRDS, 2015.

[17] L. Jehl, R. Vitenberg, and H. Meling. SmartMerge: A new approach to reconfiguration for
atomic storage. In Proc. of DISC, 2015.

[18] A. Klappenecker, H. Lee, and J. L. Welch. Dynamic regular registers in systems with churn.
Theor. Comput. Sci., 512:84–97, Nov. 2013.

[19] J. Kończak, N. Santos, T. Żurkowski, P. T. Wojciechowski, and A. Schiper. JPaxos: State
machine replication based on the Paxos protocol. Technical Report EPFL-REPORT-167765,
2011.

[20] K. M. Konwar, N. Prakash, N. A. Lynch, and M. Médard. RADON: Repairable atomic data
object in networks. In Proc. of OPODIS, 2016.

[21] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Comm. of the
ACM, 1978.

[22] L. Lamport. On interprocess communication. Distributed Computing. Parts I and II, 1986.

[23] L. Lamport. Paxos made simple. ACM SIGACT News 32, 2001.

[24] L. Lamport, D. Malkhi, and L. Zhou. Reconfiguring a state machine. SIGACT News, 41(1):63–
73, Mar. 2010.

[25] B. Liskov and J. Cowling. Viewstamped Replication revisited. Technical report, MIT, July
2012.

[26] J. R. Lorch, A. Adya, W. J. Bolosky, R. Chaiken, J. R. Douceur, and J. Howell. The SMART
way to migrate replicated stateful services. In Proc. of EuroSys, 2006.

[27] N. A. Lynch and A. A. Shvartsman. RAMBO: A reconfigurable atomic memory service for
dynamic networks. In Proc. of DISC, 2002.

[28] N. A. Lynch and M. R. Tuttle. An introduction to input/output automata. CWI Quarterly,
2:219–246, 1989.

[29] M. Merritt and G. Taubenfeld. Computing with infinitely many processes under assumptions
on concurrency and participation. In Proc. of DISC, 2000.

[30] E. Michael, D. R. K. Ports, N. K. Sharma, and A. Szekeres. Providing stable storage for the
diskless crash-recovery failure model. Technical Report UW-CSE-16-08-02, University of
Washington CSE, Aug. 2016.

17

[31] E. Michael, D. R. K. Ports, N. K. Sharma, and A. Szekeres. Recovering shared objects without
stable storage. In Proc. of DISC, Vienna, Austria, Oct. 2017.

[32] P. Musial, N. Nicolaou, and A. A. Shvartsman. Implementing distributed shared memory for
dynamic networks. Comm. of the ACM, 57(6), June 2014.

[33] B. M. Oki and B. H. Liskov. Viewstamped Replication: A new primary copy method to support
highly-available distributed systems. In Proc. of PODC, 1988.

[34] R. Oliveira, R. Guerraoui, and A. Schiper. Consensus in the crash recover model. Technical
Report TR-97/239, EPFL, Lausanne, Switzerland, 1997.

[35] D. Parker, G. Popek, G. Rudisin, A. Stoughton, B. Walker, E. Walton, J. Chow, D. Edwards,
S. Kiser, and C. Kline. Detection of mutual inconsistency in distributed systems. In IEEE Trans.
on Software Engineering, 1983.

[36] E. Pinheiro, W.-D. Weber, and L. A. Barroso. Failure trends in a large disk drive population. In
Proc. of FAST, Feb. 2007.

[37] F. B. Schneider. Implementing fault-tolerant services using the state machine approach: A
tutorial. ACM Computing Surveys, 1990.

[38] A. Shraer, B. Reed, D. Malkhi, and F. P. Junqueira. Dynamic reconfiguration of primary/backup
clusters. In Proc. of USENIX ATC, 2012.

18

A Using Unique IDs Instead of a Monotonic Clock

The communications primitives in Algorithm 1 assume that READ-CLOCK (line 5) returns an integer
which is greater than all integers previously returned by READ-CLOCK for that process, across
all incarnations. This assumption of monotonicity can be discarded, however, with a slightly more
complicated recovery/crash vector mechanism (as long as processes still have the ability to generate
unique incarnation identifiers, as required by Theorem 1).

There are two approaches: (1) using a crash vector composed of sets of IDs rather than integers,
and (2) emulating a monotonic clock (using a nonce for freshness). The former requires that processes
keep a crash vector which grows linearly with the number of crashes that have happened in the system,
while the latter requires an extra round of communication on recovery.

A.1 Crash Vectors of Sets of IDs

One way to eliminate the monotonicity requirement is to make each process’s entry in the crash
vector a set of unique IDs. The READ-CLOCK call would then be replaced with a call to a function
which returns a singleton containing a unique value, i.e., a value never before used by that process.
Then, the join operation on these crash vectors would be the element-wise union of the sets. Finally,
the guards to the ACQUIRE-REP and READ-REP handlers (lines 50 and 72) would be rewritten as
m.v[i]≥ v[i]∧ c = m.c, where v1 ≤ v2 ⇐⇒ ∀i v1[i]⊆ v2[i].

This modified algorithm works by ensuring that processes write a new, unique value into the crash
vectors of a crash-consistent quorum during recovery, so that messages from previous incarnations
(i.e., those that don’t have the latest unique value) can be ignored. Unfortunately, this means that the
size of the crash vectors grows linearly with the total number of recoveries which have happened,
instead of with the logarithm of that number.

A.2 Emulating a Monotonic Clock

The other way to forgo monotonicity is to emulate a monotonic clock. The READ-CLOCK call would
be replaced with a call to READ-QUORUM to get the latest successfully written crash vector entry
for the recovering process (using a nonce on those initial READ messages to guarantee freshness).
The recovering process would then increment its entry in the crash vector and continue recovery as
normal.

This modification is simpler and more space-efficient than the previous, but it comes with the
disadvantage of an extra round of communication during recovery.

19

B Safety Violations Traces

We show details and full traces of the safety violation appearing in existing SMR proposals for the
Diskless Crash-Recovery model.

B.1 Viewstamped Replication

Originally introduced by Oki and Liskov in 1988 [33], Viewstamped Replication was one of the first
consensus-based SMR protocols. VR provides linearizability [14] and guarantees liveness as long as
a majority of replicas stay up for long enough during the periods of synchrony.

VR is a leader-based algorithm: the system moves through a series of numbered views, in which
one node is designated as the leader. VR uses 2 protocols. During normal case execution, the leader
assigns sequence numbers to incoming client requests, sends PREPARE messages to replicas, and exe-
cutes the operation once it has received replies from a majority. When the leader is suspected to have
failed, a view change protocol replaces the leader with a new one. Replicas increment their view num-
bers, stop processing requests in the old view, then send the new leader a VIEW-CHANGE message
with their log of operations. The new leader begins processing only when it receives VIEW-CHANGE

messages from a majority of replicas, ensuring that it knows about all operations successfully com-
pleted in prior views. These two protocols are equivalent to the two phases of Paxos.

Correctness for the VR protocol hinges on the following promise: once a node has sent a
VIEW-CHANGE message, it processes no further requests from the previous view’s leader. The proto-
col ensures this invariant by having processes increment their view number and only process PREPARE

messages with matching view number.
As a result, ensuring that nodes in VR can recover from failures requires that the recovery

procedure continue to maintain this promise. That is, each replica must recover in a view number at
least as high as the view number in any VIEW-CHANGE message it has ever sent. The original version
of VR [33] achieved this invariant by writing view numbers to stable storage during view changes. A
later version, “VR Revisited” [25], claimed to provide a diskless mode of operation. It used a recovery
protocol and an extension to the view change protocol to, in essence, replace each write to disk with
communication with a quorum of nodes. We show below that this protocol is insufficient to ensure
continued correctness of the system.

Recovery Protocol VR Revisited’s recovery protocol is straightforward: the recovering replica
sends a RECOVERY message to all other replicas.6 If not recovering or in the middle of a view change,
every other node replies with a RECOVERY-RESPONSE containing its view number; the leader also
includes its log of operations. Once the recovering replica has received a quorum of responses with
the same view number, including one from that view’s leader, it updates its state with the information
in the log.

VR Revisited adds another phase to the view change protocol. When nodes determine a
view change is necessary, they increment their view number, stop processing requests in the old
view, and send a START-VIEW-CHANGE message to all other replicas. Only when replicas receive
START-VIEW-CHANGE messages from a quorum of replicas do they send their VIEW-CHANGE mes-

6This message contains a unique nonce to distinguish responses from different recoveries if a node recovers more than
once.

20

OL NL 1

Recovered process in View 0
Recovery response

Start-View-Change
Do-View-Change
Start-View for View 1 X Crash

X

X

OL Old Leader
NL New Leader

Ti
m

e

Figure 1: Trace showing safety violation in Viewstamped Replication Revisited [25]

sage to the new leader and proceed as in the original protocol. The additional phase is intended to
serve as the equivalent of a disk write, ensuring that replicas do not commit to a new view until a
majority of them become aware of the intended view change. Together with the recovery protocol,
the added phase aims to prevent violation of the view change invariant by ensuring that a crashed
replica recovers in a view at least as high as any VIEW-CHANGE message it has sent.

By itself, however, this approach is not sufficient. The problem of persistence has only shifted a
layer: rather than a node “forgetting” that it sent a VIEW-CHANGE message on a crash, it can forget
that it sent a START-VIEW-CHANGE.

Failure Trace In Figure 1, we show a trace with 3 replicas, in which a new leader (NL) mistakenly
overwrites the decision of a previous leader (OL).

⇒ Initially, NL suspects OL of failing and sends a START-VIEW-CHANGE message to node 1 to
switch to view 1.

⇒ NL crashes immediately after sending this message – before node 1 receives it – then imme-
diately initiates recovery. It sends RECOVERY messages and receives RECOVERY-RESPONSE

messages from OL and node 1, both of which are in view 0 – so NL recovers in view 0.
⇒ Node 1 receives the START-VIEW-CHANGE message sent by the previous incarnation of NL
⇒ Node 1 sends a START-VIEW-CHANGE message to NL for view 1. Because node 1 has a

quorum of START-VIEW-CHANGE messages for view 1 (its own and the one from NL), it also
sends a DO-VIEW-CHANGE message to NL. Both messages are delayed by the network.

⇒ Node 1 crashes and immediately recovers, sending RECOVERY messages to and receiving
responses from OL and NL – both of which are in view 0.

⇒ NL receives START-VIEW-CHANGE and DO-VIEW-CHANGE messages from node 1. It has a
quorum of START-VIEW-CHANGE messages, so it sends a DO-VIEW-CHANGE message for
view 1. This is enough for it to complete the view change. It sends a START-VIEW message.

⇒ Until the START-VIEW message is received, nodes OL and 1 are still in view 0 and do not
believe a view change is in progress. Thus, they can commit new operations, which the new
leader NL will not know about, leaving the system in an inconsistent state..

In this trace, messages are reordered inside the network. In particular, messages are reordered

21

OL NL 1 2 3 4 5

X

X

X

X

X

X

X

X

X

X

X

Recovered process in View 0
Recovery response Start-View-Change

Do-View-Change
Start-View for View 1

X Crash
Old LeaderOL
New LeaderNL

Ti
m

e

Figure 2: Trace showing safety violation in Viewstamped Replication Revisited [25], even when FIFO
channels are assumed

across failures, i.e., messages from a prior incarnation of a node are sometimes delivered after
messages from a later incarnation. A network with FIFO communication channels may be able to
avoid the particular violation described above.

However, message reordering is not required in general: there exists a trace with 7 nodes that
leads to the same behavior, even with FIFO communication channels, as shown in Figure 2.

B.2 Paxos Made Live

Paxos Made Live is Google’s production implementation of a Paxos [7]. It is based on the well-known
Multi-Paxos optimization which chains together multiple instances of Paxos [23] and is effectively
equivalent to VR. This system primarily uses stable storage to support crash recovery, but because
disks can become corrupted or otherwise fail, the authors propose a version that allows recovery
without disks.

Recovery Protocol On recovery, a process first uses a catch-up mechanism to bring itself up-to-
date. The specific mechanism it uses is not described, but presumably it is an application-level state
transfer from a quorum of correct processes as in VR. In order to ensure consistency, the recovering
process is not allowed to participate in the protocol until it observes a completed instance of successful
consensus after its recovery, i.e., until it learns that at least a quorum have agreed on a value for a new

22

consensus instance. This mechanism suffers from a similar problem to the one in VR. Although it
protects against losing ACKNOWLEDGMENTs (i.e., PREPARE-OK messages in VR), it does not protect
against losing PROMISEs made to potential new leaders (i.e., VR’s DO-VIEW-CHANGE messages).

OL NL 1

Recovered process
Recovery response

Propose & Promise

X Crash

X

2 3

C1

C2

Cn Consensus instance n
Accept & Acknowledgement

C2

OL Old Leader
NL New Leader

Ti
m

e

Figure 3: Trace showing safety violation in Paxos Made Live [7]

Failure Trace Figure 3 shows a trace with 5 processes that leads to a new leader mistakenly
deciding a new value for a prior successful instance of consensus, overwriting the decision of the
previous leader:

⇒ Initially, node OL is the leader.
⇒ NL suspects the leader of having failed and sends a PROPOSE message proposing itself as the

next leader.
⇒ Node 1 receives NL’s proposal and sends a PROMISE to NL, promising that it will not accept

any further operations from OL.
⇒ Node 1 crashes and immediately recovers.
⇒ OL selects a new value for the next instance, C1, and sends ACCEPT and receives

ACKNOWLEDGMENT messages from nodes 2 and 3. The operation is committed, and node 1
completes recovery because it has now observed an instance of consensus.

⇒ OL selects a value for instance C2, and sends ACCEPTs and receives ACKNOWLEDGMENTs
from nodes 1 and 3.

⇒ Node 3 then receives NL’s PROPOSE and sends NL a PROMISE.
⇒ NL has now received a quorum of PROMISE messages: from itself, node 3, and the previous

incarnation of node 1. None of these observed consensus instance C2, so NL can now start
instance 2 of consensus and overwrite the previous value with its own ACCEPT messages.

B.3 JPaxos

JPaxos [19] is a state machine replication protocol based on Paxos. It is a hybrid between Multi-
Paxos and VR, replacing promises with views. The protocol is presented in several deployment
options, including one that does not use stable storage, i.e., supports the Diskless Crash-Recovery

23

model.7

Recovery Protocol JPaxos provides a protocol for the DCR model called epoch-based recovery.
This protocol is similar in spirit to our use of crash vectors: it attempts to maintain a vector clock of
how many times each node has crashed and recovered. Each node updates this vector when it sends a
recovery response to another node, and includes a copy of its vector in the PROPOSE-OK messages
that it uses to commit to a new view (i.e., the equivalent of the DO-VIEW-CHANGE message). It then
uses these vectors to discard all PROPOSE-OK messages that do not come from a crash-consistent
quorum.

JPaxos’s epoch-based recovery protocol has one critical difference from ours. It treats recovery as
complete once it has received RECOVERY-ANSWER messages from a quorum of replicas. In contrast,
our protocol requires recovery responses from a crash-consistent quorum of replicas. That is, it
discards recovery responses from the quorum if it learned that the replica that sent the response itself
crashed and recovered.

This subtle change has important implications for correctness. Without this, JPaxos does not
correctly handle recovery of nodes when the nodes they are recovering from can themselves crash
and recover. When this happens, JPaxos can allow a node to recover in a way that simultaneously (1)
causes the node to lose the promise that it made in a previous PREPARE-OK, yet (2) does not allow
other nodes to detect that the promise might have been lost. We give an example below:

OL NL 1

Recovered process
Recovery response

Prepare & PrepareOK

X Crash

X

2 3

OL Old Leader
NL New Leader

Ti
m

e

X

X

Recovery & RecoveryAnswer

(0,0,0,0,0)

(0,0,0,1,1)

Figure 4: Trace showing safety violation in JPaxos [19]

Failure Trace Figure 4 shows a trace in which a process (node 1 in the figure) commits to a new
view via a PREPARE-OK message, then crashes and recovers. When it recovers, it recovers in the
previous view without having learned of its promise; however, the new leader (NL) does not learn
about node 1’s crash and recovery, and therefore does not discard its PREPARE-OK message.

⇒ The system starts in a view where OL is the leader, and all nodes have epoch vector
(0,0,0,0,0).

7The protocol is actually presented as using stable storage on process initialization, but only to store a monotonic value
for each recovery. The monotonic counter available in our DCR model fills this need.

24

⇒ NL suspects OL of having failed and sends out a PREPARE message proposing itself as the
leader of the next view.

⇒ Node 1 receives NL’s PREPARE message and sends a PREPARE-OK.
⇒ Node 1 crashes and immediately recovers. It sends a RECOVERY message to node 2 and

receives a RECOVERY-ANSWER. Node 2’s epoch vector is now (0,0,1,0,0)
⇒ Node 2 crashes and immediately recovers. It sends a RECOVERY message and receives

RECOVERY-ANSWERs from OL, NL, and node 3. All of these have epoch vector (0,0,0,1,0),
so node 2 now has this vector as well – in other words, it has lost its knowledge that node 1
crashed.

⇒ Node 1 sends a RECOVERY message to node 3 and receives a reply. Node 3’s epoch vector is
now (0,0,1,1,0).

⇒ Node 3 crashes and immediately recovers, communicating with OL, NL, and node 2 during
recovery. After recovery, its epoch vector is (0,0,0,1,1).

⇒ NL sends a PREPARE message to node 3 and receives a PREPARE-OK responses. It now has a
quorum of PREPARE-OK responses from itself, node 1, and node 3, so it can start a new view.

⇒ Node 1 sends a RECOVERY message to OL, and receives a response. It is now fully recovered
in the original view.

⇒ OL can now commit operations (via the quorum of itself, node 1, and node 2) which will not
appear in NL’s new view.

Our protocol avoids this problem by checking for a crash-consistent quorum on recovery. When
node 1 receives a recovery response from OL, that response will have crash vector (0,0,0,1,1) –
and so node 1 will discard the earlier recovery responses it received from nodes 2 and 3. It does so
because it has learned that those nodes have crashed and recovered, and therefore their updates to the
crash vector may not be stable.

25

C Evaluation of Recovery and Reconfiguration

Virtual stable storage (Section 5.2) is a practical solution for diskless recovery. To demonstrate this,
we added an implementation of our recovery protocol to the reference Viewstamped Replication [25]
codebase, which provides a general state machine interface. This VR implementation consists of
approximately 3500 lines of Java code; less than 100 had to be modified to implement diskless
recovery. All clients and replicas ran on servers with 2.5 GHz Intel Xeon E5-2680 processors and 64
GB of RAM. All experiments used three replicas (thereby tolerating one replica failure).

We conducted several experiments to show the effects of our recovery protocol on the throughput
of the system. We compared it with the existing recovery protocol from VR, which we showed in
Appendix B does not guarantee correctness. Not surprisingly, as our recovery protocol only adds a
small amount of metadata to view changes and recovery, the performance is indistinguishable; we do
not show these results here.

We also compared against the reconfiguration protocol already provided in the VR codebase. The
reconfiguration protocol implements the R1 method described in [24], in which reconfiguration is
triggered with a special operation, rcfg(C), and executed using the state machine itself. Method R1
is more appropriate for recovery purposes than the delayed Rα [24], because processes should be
allowed to recover as fast as possible. Our recovery protocol requires just one round trip delay to both
persist the new crash vector and recover the lost state.

We ran each experiment multiple times and show the average throughput across those individual
experiments to reduce noise from extraneous factors (e.g. Java garbage collection) and better show
the impact of recovery and reconfiguration on system throughput.

Effect of a single recovery/reconfiguration. We ran our first experiment with cluster-level
network latencies (≈ 100 µs) with 24 closed-loop clients, enough to saturate the replicas’ load.
Figure 5a shows the effect of a single recovery/reconfiguration procedure on the throughput of the
system. The blocking nature of the reconfiguration protocol is clearly visible as the throughput drops
to 0 ops/sec for at least 100 ms.

Effect of network latency. The second experiment shows the effect of high latency (e.g., in a
wide area network) on the throughput during a recovery/reconfiguration. We induced 25 ms additional
network latency on our testbed using the Linux traffic control tool, tc, emulating a geodistributed
deployment. We used 900 closed-loop clients. Our recovery protocol does not affect the overall
throughput. In contrast, the impact of reconfiguration is even more visible, as the throughput drops to
0 ops/sec for ≈ 300 ms and does not fully recover for nearly a second.

Effect of consecutive recoveries. Another consequence of a blocking reconfiguration protocol
is that a single misconfigured node can prevent the system from making progress. We demonstrate
this by simulating an unstable process which continuously crashes and restarts, beginning the recov-
ery/reconfiguration procedure anew as soon as the previous recovery/reconfiguration finished. This
sort of “flapping” might occur due to a configuration error, or when system load causes slow nodes to
be inadvertently suspected of being faulty and removed from the system [12]. As shown in Figure 5c,
there is no visible effect on the throughput during consecutive recoveries when no data transfer is
conducted (the leader must only process a single message per recovery period). In contrast, multiple
consecutive reconfigurations reduced the throughput to 0 ops/sec for the whole period.

26

 0

 10000

 20000

 30000

 40000

 50000

-1 -0.5 0 0.5 1 1.5 2

T
h

ro
u

g
h

p
u

t
(o

p
s/

se
c)

Time (seconds)

Recovery
Reconfig

(a) Throughput during a single recovery and re-
configuration starting at time 0

 0

 10000

 20000

 30000

 40000

 50000

-1 -0.5 0 0.5 1 1.5 2

T
h

ro
u

g
h

p
u

t
(o

p
s/

se
c)

Time (seconds)

Recovery
Reconfig

(b) Throughput during a single recovery and re-
configuration with wide-area latencies starting at
time 0

 0

 10000

 20000

 30000

 40000

 50000

 60000

-1 -0.5 0 0.5 1 1.5 2

T
h

ro
u

g
h

p
u

t
(o

p
s/

se
c)

Time (seconds)

Recovery
Reconfig

(c) Throughput during multiple consecutive recov-
eries and reconfigurations from 0 to 1 second

Figure 5: Experimental results comparing a recovery protocol and a reconfiguration protocol under
various scenarios

State transfer. Note that in the preceding experiments, we do not transfer any application data
state or the operation log. We do this to simulate the best case scenario for a reconfiguration protocol,
which may have to transfer state during the blocking period. Variations of reconfiguration protocols
have been proposed that optimize state transfer using various techniques [26]; our experiments assume
an ideal, free state transfer. As our recovery protocol is non-blocking, state transfer is done entirely in
the background. We have measured system performance for varying amounts of state (transferring a
log of up to 500K operations), and state transfer has no impact on system throughput for our recovery
protocol.

27

	Introduction
	Background and Related Work
	System Model
	Achieving Crash-Consistent Quorums
	Unstable Quorums: Intuition
	Crash-Consistent Quorums
	Communication Primitives in DCR
	Correctness
	Safety
	Liveness

	Recoverable Shared Objects in DCR
	Multi-writer, Multi-reader Atomic Register
	Virtual Stable Storage

	Recoverable Replicated State Machines in DCR
	Conclusion
	Using Unique IDs Instead of a Monotonic Clock
	Crash Vectors of Sets of IDs
	Emulating a Monotonic Clock

	Safety Violations Traces
	Viewstamped Replication
	Paxos Made Live
	JPaxos

	Evaluation of Recovery and Reconfiguration

