
SwiSh: Distributed Shared State Abstractions for Programmable Switches

Lior Zeno★ Dan R. K. Ports† Jacob Nelson† Daehyeok Kim† Shir Landau Feibish‡ Idit Keidar★

Arik Rinberg★ Alon Rashelbach★ Igor De-Paula★ Mark Silberstein★

★Technion †Microsoft Research ‡The Open University of Israel

Abstract
We design and evaluate SwiSh, a distributed shared state man-
agement layer for data-plane P4 programs. SwiSh enables
running scalable stateful distributed network functions on pro-
grammable switches entirely in the data-plane. We explore
several schemes to build a shared variable abstraction, which
differ in consistency, performance, and in-switch implemen-
tation complexity. We introduce the novel Strong Delayed-
Writes (SDW) protocol which offers consistent snapshots of
shared data-plane objects with semantics known as A-relaxed
strong linearizability, enabling implementation of distributed
concurrent sketches with precise error bounds.

We implement strong, eventual, and SDW consistency pro-
tocols in Tofino switches, and compare their performance in
microbenchmarks and three realistic network functions, NAT,
DDoS detector, and rate limiter. Our results show that the
distributed state management in the data plane is practical,
and outperforms centralized solutions by up to four orders of
magnitude in update throughput and replication latency.

1 Introduction

In recent years, programmable data-plane switches such
as Intel’s Tofino, Broadcom’s Trident, and NVIDIA’s Spec-
trum [9, 33, 60] have emerged as a powerful platform for
packet processing, capable of running complex user-defined
functionality at Tbps rates. Recent research has shown that
these switches can run sophisticated network functions (NFs)
that power modern cloud networks, such as NATs, load bal-
ancers [40, 57], and DDoS detectors [45]. Such data-plane
implementations show great promise for cloud operators, as
programmable switches can operate at orders of magnitude
higher throughput levels than the server-based implementa-
tions used today, enabling a massive efficiency improvement.

A key challenge remains largely unaddressed: realistic data
center deployments require NFs to be distributed over multi-
ple switches. Multi-switch execution is essential to correctly
process traffic that passes through multiple network paths,

to tolerate switch failures, and to handle higher throughput.
Yet, building distributed NFs for programmable switches is
challenging because most of today’s NFs are stateful and need
their state to be consistent and reliable. For example, a DDoS
detector may need to monitor traffic coming from multiple
locations via several switches. However, it cannot be imple-
mented by routing all traffic through a single switch since it
is inherently not scalable. Instead, it must be implemented in
a distributed manner. Furthermore, in order to detect and mit-
igate an attack, a DDoS detector must aggregate per-packet
source statistics across all switches in order to correctly iden-
tify super-spreaders sending to too many destinations. Sim-
ilarly, in multi-tenant clouds, per-user policies, such as rate
limiting, cannot be implemented in a single switch because
user’s VMs are often scattered across multiple racks, so the
inter-VM traffic passes through multiple switches.

Distributed state management is, in general, a hard prob-
lem, and it becomes even harder in the context of pro-
grammable data-plane switches. In the “traditional” host-
based NF realm, several methods have been proposed to deal
with distributed state. These include remote access to central-
ized state storage [39] and distributed object abstractions [77],
along with checkpoints and replication mechanisms for fault
tolerance [64, 71]. Unfortunately, few of these techniques
transfer directly to the programmable switch environment.
These switches have the capability to modify state on every
packet, allowing them to effectively implement stateful NFs.
However, distributing the NF logic across multiple switches
is extremely challenging as it requires synchronizing these
frequent changes under harsh restrictions on computation,
memory and communication.

Existing systems that implement NFs over multiple
switches do so by designing ad hoc, application-specific pro-
tocols. Recent work on data-plane defense against link flood-
ing [36], argues for data-plane state synchronization among
the switches, but provides no consistency guarantees. While
applicable in this scenario, it would not be enough in other
applications, as we discuss in our analysis (§4). A more com-
mon solution, usually applied in network telemetry systems,

is to periodically report the per-switch state to a central con-
troller [1,6,18,25,26,29,49,78]. Such systems need to manage
the state kept on each switch and to determine when and how
the central controller is updated – navigating complex trade-
offs between frequent updates leading to controller load and
communication overhead versus stale data leading to measure-
ment error. In contrast to these approaches, we seek a solution
that supports general application scenarios without relying on
a central controller in failure-free runs, while allowing all
switches to take a consistent action as a function of the global
state, e.g., to block a suspicious source in the DDoS detector.

We describe the design of such a general distributed shared
state mechanism for data-plane programs, SwiSh. Inspired
by distributed shared memory abstractions for distributed sys-
tems [41, 48], SwiSh provides several replicated shared vari-
able abstractions with different consistency guarantees. At
the same time, SwiSh is tailored to the needs of NFs and
co-designed to work in a constrained programmable switch
environment.

Our analysis reveals three families of NFs that lend them-
selves to efficient in-switch implementation, with distinct
consistency requirements. For each family we explore the
triple tradeoff between consistency, performance, and com-
plexity. We design (1) Strong Read-Optimized (SRO): a
strongly consistent variable for read-intensive applications
with low update rates, (2) Eventual Write-Optimized (EWO):
an eventually-consistent variable for applications that can tol-
erate inconsistent reads but require frequent writes, and (3)
Strong Delayed-Writes (SDW): a novel consistency proto-
col which efficiently synchronizes multi-variable snapshots
across switches while providing a consistency and correctness
guarantee known as A-relaxed strong linearizability [27].

SDW is ideal for implementing concurrent sketches, which
are popular in data-plane programs [12, 13, 24, 30, 35, 38,
51–54, 78, 83]. Unlike eventually consistent semantics, the
A-relaxed strong linearizability offered by SDW enables prin-
cipled analysis of concurrent sketches. This property enables
the derivation of precise error bounds and generalizes to dif-
ferent sketch types, such as non-commutative sketches [67].

Implementing these abstractions efficiently in a switch is
a challenge, and it involves judicious choice of hardware
mechanisms and optimization targets. Our main ideas are: (1)
minimizing the buffer space due to the scarcity of switch mem-
ory, even at the expense of higher bandwidth; (2) using the
in-switch packet generator for implementing reliable packet
delivery and synchronization in the data-plane.

We fully implement all the protocols in Tofino switches
and devise reusable APIs for data-plane replication. We eval-
uate the protocols both in micro-benchmarks and in three
real-world distributed NFs: a rate limiter, a network address
translator (NAT) and a DDoS detector. Our novel SDW proto-
col achieves micro-second synchronization latency and offers
about four orders of magnitude higher update rates compared
to a central controller or SRO. We show that SDW (1) achieves

stable 99th percentile replication latency of 6`sec when run-
ning on four programmable pipes (two per switch), thus shar-
ing state both among local and remote pipes; (2) scales to
32 switches when executed in a large-scale emulation and
fits switch resources even for 4K switches; (3) requires lin-
ear number of replication messages in state size which is
independent from the number of actual updates to the state.

We show that SDW is instrumental to achieving high per-
formance in applications: the centralized controller fails to
scale under growing application load, whereas SDW-based
versions show no signs of performance degradation.

This paper extends our workshop paper [82] by introducing
the SDW protocol, as well as providing an implementation
and evaluation of SRO and EWO.

In summary, this work makes the following contributions:
• Analysis of memory consistency requirements and access

patterns of common NFs suitable for in-switch execution,
• Design and implementation of strongly- and eventually con-

sistent shared variables, as well as a new SDW consistency
protocol specifically tailored for in-switch implementation,
which guarantees consistent snapshots and provably pro-
vides A-relaxed strong linearizability which facilitates im-
plementation of concurrent sketches,

• An implementation and evaluation of three distributed NFs
on Tofino switches demonstrating the practicality and utility
of the new abstractions.

2 Background: Programmable Switches

The protocol independent switch architecture (PISA) [8] de-
fines two main parts to packet processing. The first is the
parser which parses relevant packet headers, and the second
is a pipeline of match-and-action stages. Parsed headers and
metadata are then processed by the pipeline. The small (∼10
MB) switch memory is shared by all pipeline stages. Often,
switches are divided into multiple independent pipes [34],
each serving a subset of switch ports. From the perspective of
in-switch applications, the pipes appear as different switches,
so stateful objects are not shared between them.

PISA-compliant devices can be programmed using the P4
language [73]. P4 defines a set of high-level objects that con-
sume switch memory: tables, registers, meters, and counters.
While tables updates require control-plane involvement, all
other objects can be modified directly from the data-plane.

A data-plane program processes packets, and then can send
them to remote destinations to the control-plane processor on
the switch, or to the switch itself (called recirculation).

Switches process packets atomically: a packet may gener-
ate several local writes to different locations, and these up-
dates are atomic in the sense that the next processed packet
will not see partial updates. Single-row control-plane table
updates are atomic w.r.t. data-plane [74]. These properties
allow us to implement complex distributed protocols with
concurrent state updates without locks.

Although not a part of PISA, some switches add packet
generation support. Packet generators can generate packets
directly into the data-plane. For example, the Tofino Native
Architecture (TNA) [34] allows generation of up to 8 streams
of packets based on templates in switch memory. The packet
generator can be triggered by a timer or by matching certain
keys in recirculated packets.

3 Motivation

The Case for Programmable Switches as NF Processors.
The modern data center network incorporates a diverse array
of NFs beyond simple packet forwarding. Features like NAT,
firewalls, load balancers, and intrusion detection systems are
central to the functionality of today’s cloud platforms. These
functions are stateful packet processing operations, and today
are generally implemented using software middleboxes that
run on commodity servers, often at significant cost.

Consider an incoming connection to a data center service.
It may pass through a DDoS detection NF [3, 58], which
blocks suspicious patterns. This service is stateful; it collects
global traffic statistics, e.g., to identify “super-spreader” IPs
that attempt to flood multiple targets. Subsequently, traffic
may pass through a load balancer, which routes incoming
TCP connections to multiple destination hosts. These are
stateful too: because subsequent packets in the same TCP
connection must be routed to the same server (a property
dubbed per-connection consistency), the load balancer must
track the connection-to-server mapping. Both DDoS detectors
and load balancers are in use at major cloud providers [19,61],
and handle a significant fraction of a data center’s incoming
traffic. Implemented on commodity servers, they require large
clusters to support massive workload.

Programmable data-plane switches offer an appealing alter-
native to commodity servers for implementing NFs at lower
cost. Researchers have shown that they can be used to imple-
ment many types of NFs. For data center operators, the benefit
is a major reduction in the cost of NF processing. Whereas a
software-based load balancer can process approximately 15
million packets per second on a single server [19], a single
switch can process 5 billion packets per second [33]. Put an-
other way, a programmable switch has a price, energy usage,
and physical footprint on par with a single server, but can
process several hundred times as many packets.
Distributed Switch Deployments. Prior research focused on
showing that NFs can be implemented on a single switch [45,
57]. However, realistic data center deployments universally
require multiple switches. We see two possible deployment
scenarios. The NF can be placed in switches in the network
fabric. For example, in order to capture all traffic, the load
balancer would need to run on all possible paths, e.g., by being
deployed on every core switch or every aggregation switch.
Alternatively, a cluster of switches (perhaps located near the
ingress point) could be used to serve as NF accelerators. Both

are inherently distributed deployments: they require multiple
switches in order to (1) scale out, (2) tolerate switch failures,
and (3) capture traffic across multiple paths.

The challenge of a distributed NF deployment stems from
the need to manage the global state shared among the NF
instances, which is inherent to distributed stateful applica-
tions. Specifically, packet processing at one switch may re-
quire reading or updating variables that are also accessed by
other switches. For example, the connection-to-server map-
ping recorded by the load balancer must be available when
later packets for that connection are processed – even if they
are processed by a different switch, or the original switch fails.
Similarly, a rate limiter would need to track and record the
total incoming traffic from a given IP, regardless of which
switch is processing it.

SwiSh provides a shared state mechanism capable of sup-
porting global state: any global variable can be read or written
from any switch. SwiSh transparently replicates state updates
to other switches for fault tolerance and remote access. In case
of state locality, only a subset of the switches would replicate
that state [82].
The Case for Data-Plane Replication. Control-plane mech-
anisms are commonly used for replicating the switch state [7,
11, 43, 56]. However, the scalability limitations of this ap-
proach have been well recognized, and several recent works
focus on improving it by distributing the control-plane logic
across a cluster of machines or switches [43, 81]. SwiSh pro-
poses instead to replicate the state in the data plane.

Data plane replication enables supporting distributed NFs
that read or modify switch state on every packet. This new
capability of programmable data-plane switches allows im-
plementations of more sophisticated data-plane logic than
traditional control-plane SDN.

As we will see in §4, applications use state in diverse ways.
Some are read-mostly; others update state on every packet.
Some require strong consistency among switches to avoid
exposing inconsistent states to applications (e.g., a distributed
NAT must maintain correct mappings to avoid packet loss),
while others can tolerate weak consistency (e.g., rate limiters
that already provide approximate results [63]). SwiSh pro-
vides replication mechanisms for different classes of data that
operate at the speed of the switch data-plane.

At the same time, data-plane replication offers an oppor-
tunity to build a more efficient replication mechanism with-
out additional control-plane processing servers. Furthermore,
data-plane replication can take advantage of unique pro-
grammable hardware characteristics that are not available
in a traditional control-plane. For example, the atomic packet
processing property enables a multi-location atomic write
to the shared state. We leverage this feature to enable fast
processing of acknowledgments entirely in the data-plane for
our strongly-consistent replication protocol (§6.1).
Control-plane replication is not enough. Managing a glob-
ally shared state in a programmable data-plane switch requires

controller
process + merge

read

switch

switch
write

(a) Control-plane replication

send
update

merge

(b) Data-plane replication

read

write

Figure 1: Data-plane vs. control-plane replication

a new approach: replication protocols that run in the control-
plane cannot operate at this rate at scale.

Figure 1 shows the cycle performed by a controller to syn-
chronize between switches, and contrasts that with data-plane
replication. The controller periodically queries the switches,
collects information, processes it, and sends the updates back.
Merely reading and updating the register states in switches
is quite slow. We measured an average latency of 507msec
to read a sketch with 3 rows each with 64K 4-byte registers
from the on-switch control-plane;1 updates are similar. This
latency limits the rate at which the data can be retrieved from
switches.

Moreover, the central controller may become the bottleneck
quite quickly. For example, recent work on DDoS detection
that used a central controller to query switches reported a
maximum update rate of once in 5 seconds [53] because it
could not accommodate faster updates.

In contrast, data-plane replication reads from and writes to
registers much faster: we measured 486`seconds to read the
same sketch from the data-plane, which is over three orders-
of-magnitude faster than the control-plane access. Further,
in-switch processing time is negligible as well.

These properties make data-plane replication an obvious
choice for building stateful distributed NFs.

4 Application Consistency Requirements

We study the access patterns and consistency requirements of
a few typical NF applications that have been built on PISA
switches. Table 1 summarizes the results.

We identify three families of consistency requirements:
1. Strong consistency: Workloads cannot tolerate inconsis-

tency between switches – a read must see a previous write.
These are usually read-intensive workloads that can toler-
ate infrequent, but expensive writes;

2. Weak (eventual) consistency: Mixed read/write work-
loads tolerate arbitrary inconsistency;

3. Bounded-delay consistent snapshots: Mixed read/write
workloads that tolerate inconsistency for a bounded time
– a read must see all but a bounded number of previous
writes, yet require that all switches read from a consistent
state. These requirements are typical for sketches.

Below, we describe how these consistency requirements arise
in several in-switch applications.

1We use BfRt API (C++) and average over 100 iterations.

4.1 Strong Consistency

Network Address Translators (NATs) share the connection
table among the NF instances. The table is queried on ev-
ery packet, but updated when a new connection is opened;
table rows require strong consistency, or it may lead to broken
client connections in case of multi-path routing or switch fail-
ure. Also, NATs usually manage a pool of unassigned ports;
however, the pool can be partitioned among the switches into
non-overlapping ranges to avoid sharing.
Stateful firewalls monitor connection states to enforce
context-based rules. These states are stored in a shared table,
updated as connections are opened and closed, and accessed
for each packet to make filtering decisions. Like the NAT,
the firewall NF requires strong consistency to avoid incorrect
forwarding behavior.
L4 load balancers [57] assign incoming connections to a
particular destination IP, then forward subsequent packets to
the appropriate destination IP. Per-connection consistency
requires that once an IP is assigned to a connection, it does
not change, implying a need for strong state consistency.
Observation 1. These workloads require strong consistency,
but they update state infrequently, making a costly replication
protocol more tolerable. Moreover, most of these examples
use switch tables that should be modified through the control-
plane, naturally limiting their update rate. For example, the
NAT NF uses control-plane to update the connection table.
We leverage this observation when designing the replication
protocol for this class of NFs.

4.2 Weak (Eventual) Consistency

Rate limiters restrict the aggregated bandwidth of flows that
belong to a given user. The application maintains a per-user
meter that is updated on every packet. The meters are syn-
chronized periodically to identify users exceeding their band-
width limit and to enforce restrictions. Maintaining an exact
network-wide rate across all switches would incur a very high
overhead and is therefore unrealistic. So rate limiters can tol-
erate inconsistencies, but the meters must be synchronized
often enough [63] to minimize discrepancy.
Intrusion prevention systems (IPS) [47] monitor traffic
by continuously computing packet signatures and matching
against known suspicious signatures. If the number of matches
is above a threshold, traffic is dropped to prevent the intru-
sion. This application can tolerate transient inconsistencies:
it is acceptable for a few malicious packets to go through
immediately after signatures are updated.
Observation 2. Some NFs tolerate weakly consistent data,
potentially affording simpler and more efficient replication
protocols. However, as we will describe next, other functions
may defer the writes to be once in a window, but do require to
have a consistent view of prior writes among all the switches.

Application State Write frequency Read frequency

Strong consistency
NAT Translation table New connection Every packet
Firewall Connection states table New connection Every packet
L4 load-balancer Connection-to-DIP mapping New connection Every packet

Weak consistency Intrusion prevention system Signatures Low Every packet
Rate limiter Per-user meter Every packet Every window

Bounded delay consistent snapshot DDoS detection Sketch Every sampled packet Every packet
Microburst detection Sketch Every packet Every window

Table 1: NFs classified by their access pattern to shared data and their consistency requirements.

4.3 Bounded-Delay Consistent Snapshots

We assign mixed read/write applications that use data sketches
to this class. Data sketches are commonly used in data-plane
programs [12, 13, 24, 30, 35, 51, 52, 54, 78]. They are prob-
abilistic data structures that efficiently collect approximate
statistics about elements of a data stream.

Below we consider two examples of sketch-based NFs.
Microburst detection identifies flows that send a lot of data
in a short time period. ConQuest [13] is a recent sketch-based
system for a single switch, which uses a sliding window mech-
anism composed of a group of Count-Min sketches (CMS)
[14]. At most one sketch is updated on every packet.
DDoS detection [45] requires tracking the frequency of
source and destination IPs using a CMS with bitsets [80]. The
sketch is updated on every packet, but sampled periodically
to trigger an alarm when IP frequencies cross a threshold.

Strongly consistent read-optimized protocols are too costly
for such workloads due to their write-intensive nature. For-
tunately, because a data sketch is inherently approximate, it
does not require strong consistency – it is acceptable for a
query to miss some updates. Moreover, sketches are typically
stream-order invariant [67], meaning that the quantity they
estimate (such as number of unique sources, heavy hitters,
and quantiles) does not depend on the packet order.

At the same time, sketches generally cannot tolerate weak
consistency either. With no guarantee of timeliness, sketches
might be useless. A DDoS attack might be over by the time
it is detected. Moreover, the attack might be detected at one
location much earlier than it is detected at another, leading to
an inconsistent response. Furthermore, sketches have known
error bounds (see [15] and others). These bounds are violated
if updates are arbitrarily delayed [27, 66], making it hard to
reason about the impact of sketch errors on the application.
Observation 3. Sketches require a bounded-delay consistent
snapshot consistency level. Formally, it provides A-relaxed
strong linearizability (Appendix A), which supports sketch ap-
plications with provably bounded error. Intuitively, A-relaxed
strong linearizability guarantees that accesses to shared data
are equivalent to a sequential execution, except that each query
may “miss” up to A updates. SwiSh supports this consistency
level using its novel Strong Delayed-Write (SDW) protocol,

which provides a consistent snapshot of the sketch at all the
replicas, while delaying reads until such a snapshot is con-
structed.

5 SwiSh Abstractions

SwiSh provides the abstraction of shared variables to pro-
grammable switches. This section describes the interface and
the types of semantics it offers for shared data.
System model. We consider a system of many switches, each
acting as a replica of shared state. Switches communicate via
the network, and we assume a standard failure model: packets
can be dropped, duplicated and arbitrarily re-ordered, and
links and switches may fail. Since switches are comprised
of multiple independent pipes with per-pipe state (§2), we
consider a pipe rather than a switch, a node in the protocol.
We use the terms pipe and switch interchangeably.
Data model. The basic unit of shared state is a variable,
associated with a unique key, which exposes an API for updat-
ing the variable (potentially using general read-modify-write
functions), and reading it. The API is thus available on all
switches, and variables are read and updated through a dis-
tributed protocol. SwiSh supports three types of variables
which have different semantics and are accessed through dif-
ferent protocols:

1. Strong Read-Optimized (SRO) variables provide strong
consistency (linearizability);

2. Eventual Write-Optimized (EWO) variables have low
cost for both reads and writes, but provide only eventual
consistency;

3. Strong Delayed-Writes (SDW) variables provide strong
consistency (linearizability), but expose writes (even to
the local replica) only after their values have been syn-
chronized across the replicas.

We require that, no matter which semantics are used, all
variables eventually converge to a common state. To this end,
we require that variables be mergeable. We consider two merg-
ing policies: LWW as a general method, and Conflict-Free
Replicated Data Types (CRDTs) as specialized mergeable
data types that implement common data structures that are
used in NFs. A general way to merge variables is to assign

an order to updates and apply a last-writer-wins (LWW) pol-
icy. The merge function applies an update if and only if its
version number is larger than the local one. Unique version
numbers can be obtained by using a switch ID as a tie breaker
in addition to a timestamp attached to each write request.

In some cases, updates can be merged systematically. These
are discussed in the literature of Conflict-Free Replicated Data
Types (CRDTs), which offer strong eventual consistency and
monotonicity [69]. Monotonicity prevents counter-intuitive
scenarios such as an increment-only counter decreasing.

Counters are a natural application for this technique, as they
are common in NFs (§4) and have a straightforward CRDT
design. An increment-only counter can be implemented by
maintaining a vector of counter values, one per switch. To
update a counter, a switch increments its own element; to
read the result, it sums all elements. To merge updates from
another switch, a switch takes the largest of the local and
received values for each element. Further extensions support
decrement operations [69].

Variables may be used to store different data types, such
as array entries, read/write variables, sets, and counters. They
are implemented using appropriate stateful P4 objects.

6 In-Switch Replication Protocols

Below we assume that switches do not fail; we relax this
assumption in §6.4.

6.1 Strong-Read Optimized (SRO)
The SRO protocol is based on chain replication [76], as shown
in Figure 2a, adapted to an in-switch implementation with the
following key difference: instead of contacting the tail for its
latest version and keeping multiple versions per variable, we
forward reads to pending writes to the tail.

SRO provides per-variable linearizability [28], because
writes are blocking and reads concurrent to writes are pro-
cessed by the tail node. Its write throughput is limited by the
need to send packets through the control plane.2 Note, how-
ever, that many read-intensive NFs already require control
plane involvement for their updates, such as NATs, firewall
and load balancers [57].

A variation of this protocol, used in many systems, includ-
ing CRAQ [72] and ZooKeeper [31], reduces the read latency
by performing local reads, yet offers weaker semantics [46].

6.2 Eventual Write-Optimized (EWO)
Both variants of the read-optimized protocol have a high write
cost. Because supporting both strong consistency and fre-

2NetChain [37] implements chain replication entirely in the data plane.
The difference is that NetChain is a service and clients are responsible for
retrying operations. Our switches are effectively the “clients” and must buffer
output packets and retry requests.

quent updates is fundamentally challenging, we offer relaxed-
consistency variables. This is acceptable for many write-
intensive applications, as discussed in §4.

Reads from EWO variables are performed locally, and
writes are applied asynchronously. That is, when a switch re-
ceives a packet % that modifies state, it modifies its local state,
emits any output packet %′ immediately, and asynchronously
sends a write request to all other switches (Figure 2b). A more
sophisticated version can employ batching to avoid flooding
the network with updates, and instead send the write request
after accumulating several updates.

Unlike SRO, we do not delegate the problem of reliable
write delivery to the control plane because it does not scale
for write-intensive workloads. Instead, switches periodically
synchronize each EWO variable from the data plane. This
design choice avoids expensive buffering and re-transmission
logic in the data-plane.

Periodic synchronization overcomes the issue of lost pack-
ets. As updates to EWO variables are idempotent, packets
can be arbitrarily duplicated with no effect. Finally, due to
updates being commutative, packet reordering has no effect.

We note that this protocol is simple, but it leads to incon-
sistent replicas and would incur high bandwidth overheads.
With over-subscribed links [23], excessive replication traffic
would only worsen the congestion. The following protocol
overcomes these limitations.

6.3 Strong Delayed-Writes (SDW)

As explained in §4, certain NFs tolerate inconsistencies
among switches, but require state convergence within a
bounded time. For such NFs, SwiSh offers strong delayed-
writes (SDW) variables, ensuring semantics known as A-
relaxed strong linearizability [27]. These semantics guarantee
that every read of a variable observes all but a bounded num-
ber of updates. If the variable is used to store a data sketch,
then A-relaxed strong linearizability often directly implies
error bounds on the sketch’s estimate [67].

SwiSh batches updates into windows, and synchronizes
window advancement (Figure 2c). The complete protocol and
its analysis appear in Algorithm 1 in Appendix A; below is
an informal overview.

To distribute a variable ', each switch maintains three
objects holding copies of ': 'D , 'A and 'B. At any given
time, 'D is updated, 'A is queried, and 'B is synchronized
(merged) across switches. The objects’ roles are switched in
a round-robin manner on window advancement.

All switches run the same protocol. At the start of a window,
all switches send the contents of 'B to all the others. Any
(local) update is applied to 'D , and any query is executed on
'A . Once a switch receives 'B from all other switches, and
furthermore receives ACKs from all other switches that they
received its 'B , it advances to the next window.

Data
Plane

SRO
variable

Head switch Tail switch

Control
Plane

Packet
buffer

Write

Write
request

ACK

Data
Plane

SRO
variable

Control
Plane

Packet
buffer

Write
request

ACK
Write

request

(a) SRO: Based on chain replication. Relies
on control-plane for packet buffering.

Multicast
update

Periodic
synchronization

Data
Plane

EWO
variable

Data
Plane

EWO
variable

(b) EWO: Updates are broadcast. Switches
periodically send their state for reliability.

Data
Plane

Multicast
update

ACK

Rr Ru Rs

SDW variable
Data
Plane

Rr Ru Rs

SDW variable

(c) SDW: Updates are sent in rounds. Switches
advance to the next round after receiving
ACKs and updates from others.

Figure 2: A high-level overview of in-switch replication protocols.

On window advancement, the objects are rotated, so 'D be-
comes the new synchronization variable '′B , 'A is merged into
'B and then cleared – it becomes the new update object '′D ,
and the synchronized buffer 'B becomes the new read buffer
'′A . Thus, after the synchronization of window F completes,
'′D is empty and ready to accumulate updates of window
F +1, '′A reflects all updates that occurred in all switches in
all windows up to F−1, and '′B reflects all updates done in
windows up to F−1 in all switches, as well as local updates
done in window F.

Crucially, as we prove in Appendix A, this protocol guaran-
tees that a query in some window F sees all updates occurring
in all windows ≤ F−2. We also prove that, by bounding the
number of updates in a window to �, every query sees all
but at most 2#� updates that occur before it, where # is the
number of switches.
Multi-variable snapshots. Another advantage of the window
protocol is that it allows applications to take consistent snap-
shots [59] over a collection of SDW variables by advancing
the window simultaneously for all of them. This means that
we can support multi-variable queries (for instance, collecting
an array of counters as used in a CMS), and ensure that all
queries see update batches in a consistent order. Thus, given
two updates D1 and D2 occurring in different switches, it is
impossible for a query at one switch to see a state reflecting
only D1 (and not D2) while a query at another switch sees only
D2 (and not D1).

6.4 Handling Failures

We now consider fail-stop switch failures. We assume that
a central controller can detect which switches have failed.
SRO. When a switch fails, the chain becomes partitioned.
First, we reconnect the chain by bypassing the failed node;
if the failed switch is the head, the second node in the chain
assumes its responsibility. This follows the standard chain
replication protocol. A new switch is added to the end of the
chain. It starts to process writes, but does not replace the tail

until the data transfer to it is complete. This requires control
plane involvement.

The control plane on one of the switches takes a snap-
shot of its state, and then resends all pending write requests
through the normal data plane protocol. These writes contain
the sequence number at the time of the snapshot to prevent
overwriting newer values with old ones. Once the new switch
has acknowledged all writes, it replaces the tail.
EWO. Because live replicas regularly synchronize their entire
state, this synchronization protocol is inherently robust to
switch and link failures. The failed switch is removed from
the multicast group. Once a new switch replaces the faulty
one, it is added to the multicast group, and begins serving
reads after obtaining an initial view of the shared state.
SDW. The protocol inevitably stalls once a failure occurs (i.e.,
the local window ids stop increasing). Denote the maximum
window at a correct switch at the time of the failure by F<0G.
The difference between the local window ids at each pair
of switches is at most one. Thus, every stalled switch is in
window F<0G or F<0G−1.

We reconcile the states of the surviving switches as follows:
a controller reads the states of all switches. It collects the state
of 'A in some switch that is in window F<0G and sends
it to all switches that are in window F<0G − 1 (if any), so
they advance to window F<0G. The controller merges all
the 'B objects to yield the most up-to-date state for window
F<0G+1 and broadcasts it to all switches, thus updating their
'B objects to the merged state. Then it removes the failed
switch from the multicast group and the switches resume the
protocol from window F<0G +1.

Adding a new replica is a two-stage process: increasing the
expected number of ACKs on correct switches and making
sure that all switches are in the same window, which stalls
window progression, followed by adding the new replica to
the multicast group of each correct switch. The new switch
begins serving reads after the current window completes.

We note that during the recovery the updates to the live
switches are not lost, but rather accumulated in local switch

replicas 'D . These updates are then synchronized during the
recovery. Thus, this protocol is not time critical and can be
implemented in control-plane without adding code to the
resource-constrained data-plane.

7 Design

We explain the messaging mechanism shared by all protocols,
and then describe the SDW design. SRO and EWO closely
follow their descriptions in §6.

7.1 Replication Message Exchange

Packet format. Switches exchange replication packets, up-
dates, and acknowledgments with each other to replicate state.
Replication packets are IP packets; therefore, by assigning
an IP per switch, these packets can be routed using standard
L3 routing protocols. Besides Ethernet and IP headers, each
packet includes a single bit indicating whether the packet is
an update/write request or an ACK, the keys and values ac-
cessed by the write, and, in SRO, also a sequence number. For
example, in an SRO NAT implementation, the keys are the
source IP and source port, and the values are the translated IP
and port. In an SDW DDoS application, the keys are sketch
indices and the values are counter increments.
Reliable delivery. A major challenge in data-plane repli-
cation is ensuring delivery of replication packets. Current
switches do not provide enough control over internal switch
buffers to store and retransmit a packet from the data-plane.

We identify two cases that require buffering. First, there
are replication packets generated by each switch as part of the
replication protocol. Such packets must be reliably delivered
in SDW. Second, there are write packets that are received
from external sources (not from a switch) and update the NF
state in a switch. In SRO these packets cannot be externalized
until the updated state is synchronized among the switches.

We handle these two cases separately. For SDW replication
packets we keep the state being replicated at the applica-
tion level until acknowledged, instead of buffering the packet.
Then an ACK-check packet is periodically generated by the
packet generator. If the sent replication packet has not yet
been acknowledged by other switches, the ACK-check trig-
gers its retransmission. Here we use the recirculation trigger
for the packet generator to initiate a batch of packets at once.

In SRO, the packets themselves must be buffered since
their content is not reproducible by the switch. Buffering in
the data-plane is an open problem and we leave it for future
work. However, since most NFs that use SRO would require
the updates to be performed via the control-plane anyway
(Observation 1, §4.1), we relay the reliable delivery to the
control-plane of the switch that receives the write packet. The
cost of buffering and retransmission is negligible, as we show
in §9.2. Future switches might enable table updates in the

Window
ID

Next
step

ACKs
Monitor

Updates
Monitor

Timeout
Monitor

Packet
in

Normal packet

Update

ACK

ACK check

Valid
update

Recirculate for
sync on timeout

Recirculate for
window slide

Send
ACK

Ru | Rr

Data

 | Rs-mergeRs-source

Figure 3: SDW high-level design. Blue boxes are reusable P4
control blocks, while the orange box is application-dependent.

data-plane, motivating data-plane buffering mechanisms to
avoid control-plane involvement in replication.
Packet duplication and reordering. SRO replication pack-
ets are shipped with a sequence number allowing each replica
to apply updates in order and to reject updates with sequence
numbers lower than those already processed. In EWO, up-
dates are idempotent and monotonic so detecting duplication
and reordering is already a part of the merging process. We
explain the SDW implementation in detail below.

7.2 Strong Delayed-Writes (SDW)
As presented in Figure 3, the data structure used in SDW is
organized as two register arrays, each of which holds a 32-bit
pair. At any given time, one window is designated for reading
and writing, namely, its register arrays used as the 'D and 'A
objects in the SDW protocol. The other window is used in the
sync operation. The sync object 'B is divided into two regis-
ter values, one, denoted 'B-merge, receives data from other
switches, while the other, called 'B-source, holds the local
state as sent to other switches at the beginning of the window.
This separation is important to allow retransmissions (§7.1).
Synchronization. The alternating window structure enables
SwiSh to ensure that the 'A in each window are consistent
across all switches. Each time synchronization is initiated, the
content of the 'B-source register is sent to all the switches,
and the content received from all of the switches is merged
in the 'B-merge register. Note that each switch also receives
(and hence merges) its own update. Once all the updates
are received, the content of 'B-merge is identical across the
switches, so the synchronization for that window is finished.

Unfortunately, a full sketch cannot be read while processing
a single packet, so we send the sketch column by column. For
simplicity, we first explain handling of a single-column sketch,
and then discuss the complete implementation.

Each switch maintains two bitmaps: one, to track ACKs
that other switches received its updates, and the other, that
it received all updates from them. If an update was lost, the
sketch is retransmitted.
Window advancement. The last update to complete the
bitmaps signifies the completion of the sync round for the

switch. The switch advances the window ID, swaps the roles
of the registers, and starts a new sync process again. During
this swap the following arrays are swapped: 'B-merge swaps
with 'A , and 'B-source swaps with 'D .
Ready phase. Because round advancement is a local event,
the switches do not advance their windows in lock-step. Thus,
a switch may receive an update for the next window, which
will be dropped and retransmitted later. Buffering such up-
dates would significantly increase the memory footprint. In-
stead, we introduce the ready phase. Once a switch advances
its local window it broadcasts a ready packet to all the rest.
A switch starts broadcasting its updates only after it receives
ready packets from all other switches (existing bitmap can be
reused for tracking). This phase ensures that an update will
not be sent to a switch that is not yet ready to merge it. Ready
packets are retransmitted upon timeout, though in the exper-
iments we did not encounter such cases. In our evaluation
(§9.2) we show that the ready phase is critical to achieving
predictable replication latency.
Multi-column sketches. Ideally, each switch should track
each column being synchronized separately, to filter dupli-
cates and retransmit lost updates. This solution would be too
memory-consuming and would limit the sketch size, however.
We make two optimizations. First, for 'B-merge, we retain
the original bit-per-switch tracking, so a switch sends an ACK
only when a full sketch was received. Thus, we always retrans-
mit a full sketch. Second, we maintain a counter per switch
which tracks the index of the next column to be updated. Only
updates that match this counter are accepted. This approach
is correct: it handles duplicates and packet reorders. However,
while it is efficient for duplicates, it would lead to sketch re-
transmission if packets are reordered. We assume that this
is a rare event, however, because IP routing in data centers
usually maintains the same path for a given flow.

We implement both approaches. The bitmap-per-column
implementation allows using sketches with 3 rows and 64K
entries per-row and can scale up to 32 switches. The counter-
per-switch implementation can scale to 4K switches for the
same sketch size.

Note that changing the communication pattern from an all-
to-all to an aggregation tree, e.g. as in SwitchML [68], may
also reduce the per-switch state but at the cost of increasing
replication latency.
Register initialization. There is no way to iterate over all the
registers and reset them. Instead, we piggyback initialization
on the first write and use a single bit in each register to deter-
mine whether the register is initialized. These bits are reset
during the processing of sync packets.
Reducing replication bandwidth. Recall that SDW is used
for a collection of variables, stored in register arrays, over
which queries can take consistent snapshots. Our current im-
plementation of the sync protocol exchanges a full state snap-
shot (including all variables) rather than only the ones that
were updated. The challenge for selective updates is that

the switches send a varying number of packets in each win-
dow (due to hardware limitations, the state does not fit in
one packet), and so the destination does not know when to
acknowledge the state receipt. To overcome this challenge,
switches count the number of updates that they send in a
window and piggyback this number on the last update.
Recovery. The recovery protocol follows the algorithm men-
tioned above (§6.4), but also considers the ready phase and
sends ready packets to allow switches to make progress be-
fore removing the faulty switch from the replica group. SDW
does not rely on a centralized controller in failure-free runs.
However, as writes are not lost upon switch failures, recovery
is kept off of the critical-path and is not time-sensitive. There-
fore, we chose to offload the recovery protocol to a centralized
controller which frees switch resources.

8 Implementation

We expound the implementation of SRO and EWO, and then
we describe the distributed NFs implemented on top of SwiSh.
Last, we provide additional implementation details and limi-
tations.

8.1 Strong Read-Optimized (SRO)
We run the replication protocol in the control-plane logic.
Write packets (packets that modify state) are forwarded to the
control plane, which subsequently generates a write request
forwards it to the head of the chain.

The way write requests are handled depends on the storage
type where the data is stored in the switch. If the data can
be modified only from the control-plane, then write requests
must be processed by the control-plane at each switch in the
chain. Otherwise, write requests can be processed directly in
the data-plane. We implement reading from tail by tunneling
the reading packets through the tail switch to its destination
with an outer IP header (similar to IP-in-IP). While a write
is pending, the key is flagged as “read-from-tail”, causing
subsequent reading packets to be sent to the tail.

8.2 Eventual Write-Optimized (EWO)
The EWO logic uses the following types of packets: (a) Reg-
ular packets from applications – read and write to the shared
state. (b) Update packets – sent when the local state changes.
The recipient merges these updates with its local state. (c)
Generated packets – for reliable message delivery. Because
each register array can only be accessed once per packet, if
the state consists of an array, we generate one packet per array
entry. If we maintain multiple register arrays, they can be
accessed by a single packet.

Reads are local, while writes require sending an update
to other switches. To broadcast updates, we use egress-to-
egress mirroring to create a truncated copy of the original

write packet. We use the multicast engine to create a copy of
the update packet for each switch in the replica group. Each
copy is then modified to carry the updated values.

The application state each switch maintains depends on the
particular data structure. For example, to implement a shared
counter, each switch maintains a vector of counters, one per
switch in the replica group. On the other hand, growing only
sets and LWW variables do not require sharding.

In order to ensure eventual consistency in the face of lost
update packets, a periodic background task is implemented
by using the switch’s packet generator that iterates over the
register array, forming write update packets consisting of the
indices and values for each register, and forwarding each one
to a randomly-selected switch in the replica group.

8.3 Distributed NFs
We prototype three multi-switch NFs. We also prototype a dis-
tributed version for all of these NFs built using the protocols
in SwiSh. In addition, for two of them we also implement a
version that uses a central controller for synchronization.
Network Address Translator (NAT). This application maps
internal source IPs to external source IPs. Each switch main-
tains two translation tables – one that maps (external source
IP, external source port) to (internal source IP, internal source
port) and another that performs the inverse mapping. We im-
plement a distributed NAT using the SRO protocol. It requires
no changes to the data-plane logic.
Super-spreaders detection (DDoS). This application detects
source IPs that communicate with more than 1000 unique
destination IPs. Inspired by OpenSketch [80], we implement
it using a CMS, with a bit set instead of counters. Packets
are first sampled based on the (source IP, destination IP) pair.
Sampled packets set a single bit in the bitset in each row of
the sketch. The bitset is used to estimate the number of unique
destinations. Our implementation uses a sketch with 3 rows
and 32K 32-bit wide bitsets per row.

We implement two designs based on a central controller.
In both, the controller obtains the list of suspicious IPs from
each switch, and decides to block IPs if the sum of different
destination IPs for that source from both switches exceeds
1000, in which case it inserts an entry to the block list of
each switch. However, there are two ways for the controller
to obtain this data: (a) pull-based: each switch maintains a
gradually growing list of potential IPs to block. The controller
periodically pulls the delta in the list since the previous pull;
(b) push-based: each switch sends a packet when it detects a
potential IP to block. For simplicity we mark an IP as suspi-
cious if it sends to more than 500 destinations, and construct
the workload to send half of the packets from each source to
one switch and another half to the other, thus the implementa-
tion works correctly for this case.

The distributed design replicates the sketch using the SDW
protocol, each switch unilaterally decides to block a desti-

nation according to the replicated sketch, which essentially
holds a global view of the network.
Rate limiter. We implement a rate limiter based on the token
bucket algorithm [70]. In the single switch design, the con-
troller periodically fetches rate estimations from each switch,
calculates the token limit per each user and each switch, and
writes it back to the switches. We implement two distributed
versions, with EWO and SDW respectively. Switches repli-
cate their own rate estimates for each user, and calculate their
limit according to global traffic ratios.

8.4 Implementation Details

We implement SwiSh using P416 [73] and Intel P4 Studio
9.6.0 [32] for Tofino switches. We implement all protocols as
described.
API. We expose the building blocks of each protocol’s design
as P4 control blocks [73]. We then use this API to implement
our NF applications (§8.3).
Control Plane. For applications that use SRO variables, we
implement the control-plane logic in C++ using the user space
packet DMA API (kpkt). For the other protocols, we initialize
the switch state using bfrt-python. We also utilize a simple
TCP server in C++ for reading register values from the switch
for the recovery protocol.
Limitations. Our current implementation does not include
the required recovery logic for SRO because it is well-known
and in-control plane, thus it does not challenge our design.
Although independent to the number of switches in the replica
group, the major limitation of replicated NFs is the increase
in SRAM usage (×4). We fully implement recovery for SDW.

9 Evaluation

We evaluate the protocols and applications on two Tofino
switches (each two pipes) and on 32 switches in an emulator.
Our key observations are:

• Control-plane replication is too slow.
• SRO has high latency and low throughput.
• SDW is scalable and replicates large sketches in mi-

croseconds.
• For a DDoS detector, SDW responds instantly to an at-

tack, blocking malicious packets, while central controller
allows almost 50% of the packets to go through.

• For a rate limiter, SDW and EWO respond instantly to
traffic changes, while central controller lags behind.

Setup. We use two machines with Intel Xeon Silver 4216 2.1
GHz CPUs, connected via two EdgeCore Wedge 100BF-32X
programmable switches. The server is dual socket with 192
GB RAM. Hyper-threading and power saving are disabled.
One machine acts as a traffic generator/consumer; it has two
100G Intel E800 NICs. The other acts as a central controller;
it has two 40G NVIDIA ConnectX-4 Lx EN NICs.

Topology. We use the leaf-spine topology in which the
switches are connected as shown in Figure 4, and run ECMP
on one pipe and a NF on the second.

Nic 1

ECMP

NF
Pipe 0

Pipe 1

Pipe 0

Pipe 1

NF

ECMP

Nic 2Client

Switch 1 Switch 2

 Controller

Figure 4: Testbed topology.

Performance measurement methodology. We build a
DPDK-based packet generator. We evaluate SwiSh on a real
packet trace, CAIDA [10], as well as synthetic workloads.
Throughput is measured by the NIC and application-level
performance counters. Latency is measured in software.

To measure the performance of the in-switch NFs and pro-
tocol implementations, we create a line-rate load (100Gbps,
unless stated otherwise) on a single switch port. To validate
that the performance obtained via this approach is representa-
tive of the switch under load over all its ports, we also run one
experiment with a fully loaded switch running at 2.1 Gpps
(§9.2). We show that the performance is almost the same as
with a single port traffic, validating our methodology.

9.1 End-to-end benchmarks
NAT. We replay 10K packets from the CAIDA dataset and
measure the per packet latency with and without replication.
21% of the packets are processed by the control plane (update
packets), while the rest are processed in the data-plane. Figure
5d shows the latency distribution. SwiSh does not introduce
any overheads for read packets, while update packets are
taking about twice as long to get processed since they are
batched in the control plane until the update is acknowledged
by the other switch.

We also compare the throughput of the distributed version
with the one on a single switch, while sending 64-byte packets
at line rate to a single port. There are no updates during the
test, as we wait for the handshake to complete. Therefore,
both versions achieve line-rate throughput (112 Mpps).
Super-spreader detection. DDoS is configured to detect
sources (IPs) that communicate with more than 1K differ-
ent destinations. We create a trace where packets are sent
from different source IPs, each with thousands of different
destinations. Each source IP sends 10K packets.

In the experiment we replay a trace where we vary the
number of packets that have different source IPs sent per
second, while maintaining the absolute transfer rate from
each source IP constant. This is a reasonable scenario where

an attacker uses a botnet to generate malicious traffic while
maintaining the transfer rate of each bot constant.

We compare the number of packets sent by each source IP
relative to the number of packets received by the destination
IP. Ideally, each source IP should be blocked after the first
1000 packets, therefore the ratio should be about 10%.

We compare the push and pull baselines with the implemen-
tation that uses SDW replication. Figure 5b shows that both
versions of the centralized controller are quickly becoming
overwhelmed and cannot keep up with processing the updates,
failing to block packets. At 1.5K source IPs/second the push
baseline breaks down because the push requests to block cer-
tain IPs from the switch get dropped at the host, thus their
respective IPs are left unblocked. The results were obtained
after increasing the socket receive buffers to 25MB.

To validate this result, we run the same workload fixed
at 4K source IPs/sec. Figure 5a shows the distribution of
the ratio of packets received per source IP across all source
IPs. We observe that the pull design manages to block up to
30% of all the source IPs, but for each IP different number
of packets leaked. Effectively, the pull design was unable to
block traffic from 70% of the source IPs. That is because
the controller collects batches of requests and handles them
together, thus some source IPs manage to send more than
others. However, the push design blocks only 5% of all the
source IPs. The SDW-based design, shown as a vertical line
at 10%, passes the first 10% of each source (which is our
super-spreader detection threshold), and then blocks all the
packets as expected.
Per-user rate limiter. We set a limit of 2Mpps per-user and
configure the rate limiter to re-estimate rates every 1ms.

We create a trace where packets are sent from different
source IPs (each source defines a different user) with 40
unique users (sending rate is 2Mpps per user). The trace
is comprised of alternating phases with a period of 5s. In even
phases, all flows of a specific user are split equally between
the two switches. While in odd phases, 90% of each user’s
flows are routed to one of the spine nodes and the rest 10% are
forwarded to the other spine node. These alternations results
in immediate changes in the per-user rate estimator that each
switch maintains.

We compare our EWO and SDW protocols with a pull-
based baseline and measure the average throughput per user
over time. In the first 5 seconds of the experiment, the traffic is
balanced so each switch runs at 1Mpps and the controller sets
a per-user limit of 1Mpps on each switch. At the 5th second
of the experiment, we change phases, and now one switch
measures 1.8Mpps and the other switch measures 0.2Mpps.
Because each switch was set to limit each user to 1Mpps,
the first switch forwards only 1Mpps and the other switch
forwards 0.2Mpps resulting in 1.2Mpps aggregate throughput.
Figure 5c shows the average received throughput per-user over
time at a sampling period of 200 ms. The baseline misses the
phase changing point and allows the throughput to reduce to

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

RX / TX per Source IP (%)

C
D

F

Baseline (push) Baseline (pull) SDW

(a) The distribution of the ratio of packets
received per source IP across all 4K source
IPs.

0 500 1,000 1,500 2,000
0

20

40

60

80

100

Number of DDoS sources per second

R
ec

ei
ve

d
/S

en
t(

%
)

Baseline (push) Baseline (pull) SDW

(b) The ratio of received packets for differ-
ent number of DDoS sources per second.

5 10 15 20 25 30
0

0.5

1

1.5

2

Time (s)

A
vg

.T
hr

ou
gh

pu
t

pe
rU

se
r(

M
pp

s)

Baseline (pull) EWO SDW

(c) The impact of reaction time on a rate-
limiter when changing traffic distribution.

101 102 103
0%

20%

40%

60%

80%

100%

Latency (`s)

C
D

F

Baseline SRO

(d) NAT latency distribution with and with-
out replication.

10 100 1k 10k

1

10

100

1000

Update Rate (pps)

A
ve

ra
ge

L
at

en
cy

(m
s)

Baseline SRO

(e) NAT latency with and without replica-
tion when sending update packets at a vari-
able rate.

16 128 1K 8K 64K 512K

10

100

1000

Sketch Size (bytes)

L
at

en
cy

99
%

Pe
rc

en
til

e
(`

s)

local-2 (w/o ready) local-2 symmetric-4

(f) The window advancement period for
SDW replication for different state sizes.

Figure 5: End-to-end and analysis results.

below 1.5Mpps, slightly more than the expected value due to
sampling. SDW and EWO perform compareably. They both
react immediately to traffic changes without throughput drops.
EWO eagerly sends 40 updates every 1ms, allowing the other
switch to immediately change its limit. SDW replicates such
a small state (40 32bit values) under 10 microseconds (5f).

9.2 Analysis
SRO: Update rate. We measure the overhead introduced to
update packets with replication. For this experiment we run
NAT on spine switches and send update packets that are all
processed by the control plane. We measure the per packet
latency and report the average. Figure 5e shows that compared
to the single switch, in the replicated setting the update rate
is reduced by a factor of ×2.5. This is expected since each
update packet generates a write request and an ACK that has
to be processed on the other switch.

We observe that the update rate of SRO is limited by the
throughput of the control plane on a single switch. SRO
variables cannot sustain more than 20K updates per second
(160Kbps). Update latency increases with the update rate
because packets are buffered in the control-plane until ac-
knowledged.
SDW: Window advancement latency. We measure the time
each window absorbs updates before being advanced. We
vary the state size being replicated, so for the smallest sketch
the time to advance the window is the upper bound on the
replication rate, constrained by the latency of updates between
switches. There are no retransmissions in this experiment.

We replicate a sketch with 3 rows and vary each row size to
up to 64K counters (total of 768KB in each sketch). We store
the global timestamps of the first 10K window increments
and read them at the end of the run.

We use the following topologies: (a) local-2: two local
pipes on a single switch (we measure identical results com-
pared to two remote pipes); (b) symmetric-4 - four pipes, two
in each switch, with a dedicated link between each pipe.

Figure 5f shows the 99th percentile latency to advance
the window for each state size. As we see, the window can
be advanced as fast as every 3`sec for the skectch of 4
bytes. The current bottleneck is the packet sending rate which,
even within the switch (Recirculation), takes a few hundred
nanosecs. This window advancement rate implies that the up-
dates become visible after 6`sec (since 'D becomes 'A after
two window advancements). For the sketch larger than 1K, the
actual replication rate is about 13Gbps between each pair of
switches, which is about five orders of magnitude faster than
SRO. We note that this rate is limited by the maximum packet
rate (∼160Mpps) of a single port. This is because replication
packets hold only 12 bytes of data, which in turn is due to
limited per-packet memory accesses imposed by the hardware.
Optimizing the effective bandwidth is left for future work.

We observe negligible increase in the window advancement
latency when adding two additional switches. This is because
each switch updates all the others concurrently, hence no
additional delay. The ready phase adds a constant latency
overhead of 2`sec to each replication round.
SDW: Performance under full switch load. We generate

traffic on all switch ports as follows. We saturate a single port
using our packet generation machine and let that traffic travel
through each port in the switch by connecting ports in a chain
and forming a “snake” (a similar methodology was used in
NetCache [38]). We reserve ports that are used for replication.
We use the symmetric-2 topology. We saturate the switch with
130B packets, each updating the sketch. For a sketch with 64K
entries per-row we measure 486 `sec window advancement
latency, at a total packet rate of 1.8Gpps. For a sketch size of
1 entry per-row we measure 3.2 `sec window advancement
latency at a total packet rate of 2.1Gpps.3 In both extremes,
we could not measure any impact on window advancement
latency, which is expected as the switch logic is guaranteed
to perform packet processing at a switch line rate.
SDW: Retransmissions and the ready phase. The ready
phase ensures that the switches do not send updates after
advancing their window before all others advanced to that
same window. Without this guarantee, an update from the
consequent window that arrives too early will be dropped,
and later retransmitted after a timeout. We now show that this
phase is essential to avoid retransmissions and maintain low
latency when scaling to more switches.

We first run the protocol without the ready phase (Figure 5f,
local-2 no ready) on two pipes on the same switch. The proto-
col runs in lockstep on both of the pipes, so we do not see any
update retransmissions. However, with four pipes (symmetric-
4 topology) there are many retransmission (not shown in the
Figure). For example, we measure an average of 2934 update
retranmissions in the first 10K window advancements across
100 runs. We observe a similar behavior in an asymmetric
topology four pipes connected using the leaf-spine topology.
Adding the ready phase completely eliminates such retrans-
missions and allows the system to progress effectively as fast
as a two-pipes system, with stable latency guarantees.
SDW: Recovery. We measure the total recovery time of the
protocol from the time pipes fail to the time the system makes
progress, i.e. windows are advancing again. We run four pipes
in the 4-symmetric topology that replicate a sketch and shut
down random pipes. We disable the failed pipes’ ports to
other switches in a random order. We repeat this experiment
20 times for each data point, and vary sketch sizes and failure
counts. We report the average recovery time.

Figure 6 shows that recovery time is dominated by the
time it takes to synchronize the sketches of correct switches.
Therefore, recovery time increases as sketch size increases,
and decreases as the failure count increases. As expected, for
the 3 pipe failures setup, only a single correct switch remains
live, thus recovery time is independent from the sketch size.

As explained in §6.4, updates sent to live switches during
the recovery are not lost but accumulated, so the recovery time
minimization is a secondary goal. Nevertheless, recovery time
can be further reduced by applying additional optimizations,

31-entry per-row requires lower replication load and frees certain re-
sources affording higher packet rate.

16 128 1K 8K 64K 512K

100

1000

Sketch Size (bytes)

A
ve

ra
ge

R
ec

ov
er

y
Ti

m
e

(m
se

c)

1 pipe 2 pipes 3 pipes

Figure 6: The impact of number of failures and sketch size on
the total SDW recovery time.

e.g. parallelizing the currently serial controller-to-switch com-
munication and batching requests, and by writing the logic
using a more efficient programming language.
SDW: Scalability. We emulate a large replica group of
switches running the SDW protocol by connecting together
32 Tofino model instances running in Docker containers. The
switches are connected together via another switch that runs
L3 forwarding. We verify that the protocol runs correctly and
that there are no update retransmissions.

10 Related Work

In-switch NFs. Previous studies have shown that offloading
NFs to programmable switches, such as load balancers [57]
and DDoS detectors [45], enables very high performance.
However, these projects were designed for a single switch.
SwiSh aims to facilitate the deployment of these applications
in a distributed fashion. RedPlane [42] enables switch state
replication to servers for fault tolerance, but does not support
state modification on multiple switches concurrently, as our
work does.
In-switch acceleration. Previous works suggested in-switch
acceleration for general-purpose applications such as key-
value caches [38, 50], replicated key-value stores [37], query
processing [24] and aggregations [68, 75]. SwiSh can be use-
ful for such general-purpose applications too. For example,
SwiSh could be used to implement the cache invalidation
mechanism in DistCache. We note, however, that due to the
general-purpose nature of these applications, some of them
feature a complex state, and require strong semantics together
with frequent updates, which SwiSh does not provide. Such
requirements are less common in NFs; thus, we target SwiSh
to facilitate the development of distributed NFs.
State management for NFs. State management and fault-
tolerance for NFs on servers have been well studied [20,64,65,
71,77]. However, these techniques are infeasible in the context
of programmable switches. For example, FTMB [71] suggests
a rollback-recovery technique for fault-tolerance in which
packets are logged and replayed upon failures. However, due
to the high processing rate of the switch, it is impractical to log

every packet to external storage or through the control-plane.
In-switch coordination. NetChain [37] and P4xos [16] im-
plement coordination protocols running in the data plane to
provide reliable storage as a network service. We apply data
plane replication as an internal building block for NFs, a task
for which it is well suited as the data-plane properties (e.g.,
limitations to ∼100 byte objects) are better matched for repli-
cating NF state registers than arbitrary applications.
Distributed network state. Managing distributed network
state has been well studied. Onix [43] distributes network-
wide state among multiple controllers. DIFANE [81] offloads
forwarding decisions to authority switches to alleviate load
on the controller and to reduce per-flow memory usage in
network switches. Mahajan et al. [55] explore consistency se-
mantics during network state updates. While previous works
focus on control-plane managed state, SwiSh specifically tar-
gets replication of mutable state of data-plane programs.
Distributed network monitoring. Network-wide monitor-
ing requires coordinated, distributed computation across
switches [25, 26, 63]. Harrison et al. [25, 26] propose a dis-
tributed heavy-hitter detection algorithm that combines local
counters with a centralized controller. SwiSh can be used to
implement similar algorithms without a centralized controller,
potentially providing faster response. Ripple [36] replicates
state in data-plane for link-flooding defense but does not
provide consistency guarantees. Ripple can be implemented
using SwiSh. Distributed computation is also needed if the
resources of a single switch are insufficient, e.g. Demian-
iuk et al. [18] partition state across switches for flow metric
computation.
Relaxing consistency for availability. Many systems have
traded consistency for increased availability and performance
[4, 17, 21, 44, 62, 72, 79]. For example, TACT [79] aims to
provide a middle-ground between strong and eventual consis-
tency. However, TACT may block read and write operations
to enforce consistency bounds which is unsustainable in the
switch environment. Additionally, TACT maintains a single
version of the data while SDW maintains multiple versions
of the state and seamlessly switches to the up-to-date one
as soon as the previous synchronization round is completed.
Therefore, the protocol advances as fast as the network con-
ditions allow while providing consistent snapshots to every
replica. On the other hand, the combination of dynamic sys-
tem behavior and consistent snapshots cannot be expressed
using TACT’s consistency metrics.

11 Conclusions

SwiSh offers a systematic approach to state sharing among
programmable switches. We analyze the requirements of in-
switch stateful NFs and implement three protocols for data-
plane replication. We introduce a novel SDW protocol that
achieves high update rate and low update latency, while pro-
viding strong consistency guarantees, which are particularly

useful for implementing sketches. We show experimentally
that data-plane is practical and fast, and achieves orders of
magnitude higher performance than the traditional centralized
controller designs. We believe that this work will pave the way
for building distributed stateful NFs entirely in data-plane.

Acknowledgments

We would like to thank the anonymous reviewers and our
shepherd, Dejan Kostic, for their insightful comments and
constructive feedback. Lior Zeno was partially supported by
the HPI-Technion Research School. We gratefully acknowl-
edge support from Israel Science Foundation (grants 980/21
and 1027/18) and Technion Hiroshi Fujiwara Cyber Security
Research Center.

References

[1] Yehuda Afek, Anat Bremler-Barr, Shir Landau Feibish,
and Liron Schiff. Detecting heavy flows in the SDN
match and action model. Comput. Networks, 136:1–12,
2018.

[2] Pankaj K Agarwal, Graham Cormode, Zengfeng Huang,
Jeff M Phillips, Zhewei Wei, and Ke Yi. Mergeable
summaries. ACM Transactions on Database Systems
(TODS), 38(4):1–28, 2013.

[3] Amazon Web Services. AWS Shield. https://aws.
amazon.com/shield.

[4] Mary Baker and John Ousterhout. Availability in the
Sprite distributed file system. In Proceedings of the 4th
workshop on ACM SIGOPS European workshop, pages
1–4, 1990.

[5] Ziv Bar-Yossef, TS Jayram, Ravi Kumar, D Sivakumar,
and Luca Trevisan. Counting distinct elements in a data
stream. In International Workshop on Randomization
and Approximation Techniques in Computer Science,
pages 1–10. Springer, 2002.

[6] Ran Ben Basat, Xiaoqi Chen, Gil Einziger, Shir Landau
Feibish, Danny Raz, and Minlan Yu. Routing oblivious
measurement analytics. In IFIP Networking, pages 449–
457, 2020.

[7] Pankaj Berde, Matteo Gerola, Jonathan Hart, Yuta
Higuchi, Masayoshi Kobayashi, Toshio Koide, Bob
Lantz, Brian O’Connor, Pavlin Radoslavov, William
Snow, et al. ONOS: Towards an Open, Distributed SDN
OS. In Proceedings of the third workshop on Hot topics
in software defined networking, pages 1–6, 2014.

[8] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Vargh-
ese, Nick McKeown, Martin Izzard, Fernando Mujica,

https://aws.amazon.com/shield
https://aws.amazon.com/shield

and Mark Horowitz. Forwarding Metamorphosis: Fast
Programmable Match-Action Processing in Hardware
for SDN. ACM SIGCOMM Computer Communication
Review, 43(4):99–110, 2013.

[9] Broadcom. Trident 3. https://www.broadcom.com/
products/ethernet-connectivity/switching/
strataxgs/bcm56870-series/.

[10] CAIDA. The CAIDA UCSD Anonymized Internet
Traces - 2019. https://www.caida.org/catalog/
datasets/passive_dataset.

[11] Martin Casado, Michael J Freedman, Justin Pettit, Jiany-
ing Luo, Nick McKeown, and Scott Shenker. Ethane:
Taking Control of the Enterprise. ACM SIGCOMM
computer communication review, 37(4):1–12, 2007.

[12] Xiaoqi Chen, Shir Landau Feibish, Yaron Koral, Jennifer
Rexford, and Ori Rottenstreich. Catching the Microburst
Culprits with Snappy. In Proceedings of the Afternoon
Workshop on Self-Driving Networks, SelfDN 2018, page
22–28, New York, NY, USA, 2018. Association for Com-
puting Machinery.

[13] Xiaoqi Chen, Shir Landau Feibish, Yaron Koral, Jen-
nifer Rexford, Ori Rottenstreich, Steven A. Monetti, and
Tzuu-Yi Wang. Fine-grained queue measurement in the
data plane. In ACM SIGCOMM Conference on Emerg-
ing Networking EXperiments and Technologies, pages
15–29. ACM, 2019.

[14] Graham Cormode and S. Muthukrishnan. An improved
data stream summary: The count-min sketch and its
applications. Journal of Algorithms, 55(1):58–75, April
2005.

[15] Graham Cormode and S. Muthu Muthukrishnan. Ap-
proximating data with the count-min sketch. IEEE Soft-
ware, 29(1):64–69, 2012.

[16] H. T. Dang, P. Bressana, H. Wang, K. S. Lee, N. Zil-
berman, H. Weatherspoon, M. Canini, F. Pedone, and
R. Soulé. P4xos: Consensus as a Network Service.
IEEE/ACM Transactions on Networking, pages 1–13,
2020.

[17] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani,
Gunavardhan Kakulapati, Avinash Lakshman, Alex
Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. Dynamo: Amazon’s Highly Avail-
able Key-Value Store. ACM SIGOPS operating systems
review, 41(6):205–220, 2007.

[18] V. Demianiuk, S. Gorinsky, S. Nikolenko, and K. Kogan.
Robust Distributed Monitoring of Traffic Flows. In
2019 IEEE 27th International Conference on Network
Protocols (ICNP), pages 1–11, 2019.

[19] Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody
Smith, Roman Kononov, Eric Mann-Hielscher, Ardas
Cilingiroglu, Bin Cheyney, Wentao Shang, and Jin-
nah Dylan Hosein. Maglev: A Fast and Reliable Soft-
ware Network Load Balancer. In 13th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 16), pages 523–535, Santa Clara, CA, 2016.

[20] Aaron Gember-Jacobson, Raajay Viswanathan,
Chaithan Prakash, Robert Grandl, Junaid Khalid,
Sourav Das, and Aditya Akella. OpenNF: Enabling
Innovation in Network Function Control. In Proceed-
ings of the 2014 ACM Conference on SIGCOMM,
SIGCOMM ’14, page 163–174, New York, NY, USA,
2014. Association for Computing Machinery.

[21] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Le-
ung. The Google file system. In Proceedings of the
nineteenth ACM symposium on Operating systems prin-
ciples, pages 29–43, 2003.

[22] Wojciech Golab, Lisa Higham, and Philipp Woelfel. Lin-
earizable implementations do not suffice for randomized
distributed computation. In Proceedings of the forty-
third annual ACM symposium on Theory of computing,
pages 373–382, 2011.

[23] Albert Greenberg, James R. Hamilton, Navendu Jain,
Srikanth Kandula, Changhoon Kim, Parantap Lahiri,
David A. Maltz, Parveen Patel, and Sudipta Sengupta.
VL2: A scalable and flexible data center network. In Pro-
ceedings of ACM SIGCOMM 2009, Barcelona, Spain,
August 2009. ACM.

[24] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feam-
ster, Jennifer Rexford, and Walter Willinger. Sonata:
Query-Driven Streaming Network Telemetry. In Pro-
ceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication, SIGCOMM
’18, page 357–371, New York, NY, USA, 2018. Associ-
ation for Computing Machinery.

[25] Rob Harrison, Shir Landau Feibish, Arpit Gupta, Ross
Teixeira, S. Muthukrishnan, and Jennifer Rexford. Carpe
elephants: Seize the global heavy hitters. In Pro-
ceedings of the 2020 ACM SIGCOMM 2020 Work-
shop on Secure Programmable Network Infrastructure,
SPIN@SIGCOMM 2020, Virtual Event, USA, August 14,
2020, pages 15–21, 2020.

[26] Harrison, Rob and Cai, Qizhe and Gupta, Arpit and Rex-
ford, Jennifer. Network-Wide Heavy Hitter Detection
with Commodity Switches. In Proceedings of the Sym-
posium on SDN Research, SOSR ’18, New York, NY,
USA, 2018. Association for Computing Machinery.

https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56870-series/
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56870-series/
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56870-series/
https://www.caida.org/catalog/datasets/passive_dataset
https://www.caida.org/catalog/datasets/passive_dataset

[27] Thomas A Henzinger, Christoph M Kirsch, Hannes
Payer, Ali Sezgin, and Ana Sokolova. Quantitative re-
laxation of concurrent data structures. In Proceedings of
the 40th annual ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 317–328,
2013.

[28] Maurice P. Herlihy and Jeannette M. Wing. Lineariz-
ability: A Correctness Condition for Concurrent Objects.
ACM Trans. Program. Lang. Syst., 12(3):463–492, July
1990.

[29] Qun Huang, Xin Jin, Patrick P. C. Lee, Runhui Li,
Lu Tang, Yi-Chao Chen, and Gong Zhang. SketchVi-
sor: Robust network measurement for software packet
processing. In ACM SIGCOMM, pages 113–126, 2017.

[30] Qun Huang, Patrick P. C. Lee, and Yungang Bao. Sketch-
learn: Relieving user burdens in approximate measure-
ment with automated statistical inference. In ACM SIG-
COMM, pages 576–590, 2018.

[31] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira,
and Benjamin Reed. Zookeeper: Wait-free coordination
for internet-scale systems. In USENIX annual technical
conference, volume 8, 2010.

[32] Intel. P4 Studio. https://www.intel.com/
content/www/us/en/products/network-io/
programmable-ethernet-switch/p4-suite/
p4-studio.html.

[33] Intel. Tofino. https://www.intel.
com/content/www/us/en/products/
network-io/programmable-ethernet-switch/
tofino-series/tofino.html.

[34] Intel. Tofino Native Architecture. https://github.
com/barefootnetworks/Open-Tofino.

[35] Nikita Ivkin, Zhuolong Yu, Vladimir Braverman, and
Xin Jin. Qpipe: Quantiles sketch fully in the data plane.
In Proceedings of the 15th International Conference on
Emerging Networking Experiments And Technologies,
pages 285–291, 2019.

[36] Jiarong Xing and Wenqing Wu and Ang Chen. Ripple:
A Programmable, Decentralized Link-Flooding Defense
Against Adaptive Adversaries. In 30th USENIX Security
Symposium (USENIX Security 21), pages 3865–3881.
USENIX Association, August 2021.

[37] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster,
Jeongkeun Lee, Robert Soulé, Changhoon Kim, and Ion
Stoica. NetChain: Scale-Free Sub-RTT Coordination. In
15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 18), pages 35–49, Renton,
WA, April 2018. USENIX Association.

[38] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé,
Jeongkeun Lee, Nate Foster, Changhoon Kim, and Ion
Stoica. NetCache: Balancing Key-Value Stores with
Fast In-Network Caching. In Proceedings of the 26th
Symposium on Operating Systems Principles, SOSP ’17,
page 121–136, New York, NY, USA, 2017. Association
for Computing Machinery.

[39] Murad Kablan, Azzam Alsudais, Eric Keller, and Franck
Le. Stateless Network Functions: Breaking the Tight
Coupling of State and Processing. In 14th USENIX Sym-
posium on Networked Systems Design and Implemen-
tation (NSDI 17), pages 97–112, Boston, MA, March
2017. USENIX Association.

[40] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh
Sivaraman, and Jennifer Rexford. HULA: Scalable
Load Balancing Using Programmable Data Planes. In
Proceedings of the 2016 Symposium on SDN Research
(SOSR ’16), Santa Clara, CA, USA, March 2016. ACM.

[41] Pete Keleher, Alan L. Cox, Sandhya Dwarkadas, and
Willy Zwaenepoel. TreadMarks: Distributed Shared
Memory on Standard Workstations and Operating Sys-
tems. In Proceedings of the 1994 USENIX Winter Tech-
nical Conference, San Francisco, CA, USA, January
1994. USENIX.

[42] Daehyeok Kim, Jacob Nelson, Dan R. K. Ports, Vyas
Sekar, and Srinivasan Seshan. RedPlane: Enabling Fault-
Tolerant Stateful in-Switch Applications. In Proceed-
ings of the 2021 ACM SIGCOMM 2021 Conference,
SIGCOMM ’21, page 223–244, New York, NY, USA,
2021. Association for Computing Machinery.

[43] Teemu Koponen, Martin Casado, Natasha Gude, Jeremy
Stribling, Leon Poutievski, Min Zhu, Rajiv Ramanathan,
Yuichiro Iwata, Hiroaki Inoue, Takayuki Hama, et al.
Onix: A Distributed Control Platform for Large-Scale
Production Networks. In OSDI, volume 10, pages 1–6,
2010.

[44] Avinash Lakshman and Prashant Malik. Cassandra: a
decentralized structured storage system. ACM SIGOPS
Operating Systems Review, 44(2):35–40, 2010.

[45] A. C. Lapolli, J. Adilson Marques, and L. P. Gaspary.
Offloading Real-time DDoS Attack Detection to Pro-
grammable Data Planes. In 2019 IFIP/IEEE Symposium
on Integrated Network and Service Management (IM),
pages 19–27, 2019.

[46] Kfir Lev-Ari, Edward Bortnikov, Idit Keidar, and Alexan-
der Shraer. Composing ordered sequential consistency.
Information Processing Letters, 123:47–50, 2017.

https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/p4-suite/p4-studio.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/p4-suite/p4-studio.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/p4-suite/p4-studio.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/p4-suite/p4-studio.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://github.com/barefootnetworks/Open-Tofino
https://github.com/barefootnetworks/Open-Tofino

[47] B. Lewis, M. Broadbent, and N. Race. P4ID: P4 En-
hanced Intrusion Detection. In 2019 IEEE Conference
on Network Function Virtualization and Software De-
fined Networks (NFV-SDN), pages 1–4, 2019.

[48] Kai Li and Paul Hudak. Memory coherence in shared
virtual memory systems. ACM Transactions on Com-
puter Systems, 7(4):321–359, November 1989.

[49] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan
Yu. FlowRadar: A better NetFlow for data centers.
In USENIX Symposium on Networked Systems Design
and Implementation, pages 311–324, Santa Clara, CA,
March 2016.

[50] Zaoxing Liu, Zhihao Bai, Zhenming Liu, Xiaozhou Li,
Changhoon Kim, Vladimir Braverman, Xin Jin, and Ion
Stoica. DistCache: Provable Load Balancing for Large-
Scale Storage Systems with Distributed Caching. In
Proceedings of the 17th USENIX Conference on File and
Storage Technologies, FAST’19, page 143–157, USA,
2019. USENIX Association.

[51] Zaoxing Liu, Ran Ben-Basat, Gil Einziger, Yaron Kass-
ner, Vladimir Braverman, Roy Friedman, and Vyas
Sekar. Nitrosketch: Robust and general sketch-based
monitoring in software switches. In ACM SIGCOMM,
pages 334–350, 2019.

[52] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger,
Vyas Sekar, and Vladimir Braverman. One sketch to
rule them all: Rethinking network flow monitoring with
UnivMon. In ACM SIGCOMM, pages 101–114, 2016.

[53] Zaoxing Liu, Hun Namkung, Georgios Nikolaidis,
Jeongkeun Lee, Changhoon Kim, Xin Jin, Vladimir
Braverman, MinlanYu, and Vyas Sekar. Jaqen: A high-
performance switch-native approach for detecting and
mitigating volumetric ddos attacks with programmable
switche. In Proc. USENIX Security, 2021.

[54] Zaoxing Liu, Samson Zhou, Ori Rottenstreich, Vladimir
Braverman, and Jennifer Rexford. Memory-efficient per-
formance monitoring on programmable switches with
lean algorithms. In Symposium on Algorithmic Princi-
ples of Computer Systems, APOCS, pages 31–44, 2020.

[55] Mahajan, Ratul and Wattenhofer, Roger. On Consistent
Updates in Software Defined Networks. In Proceed-
ings of the Twelfth ACM Workshop on Hot Topics in
Networks, HotNets-XII, New York, NY, USA, 2013. As-
sociation for Computing Machinery.

[56] McKeown, Nick and Anderson, Tom and Balakrish-
nan, Hari and Parulkar, Guru and Peterson, Larry
and Rexford, Jennifer and Shenker, Scott and Turner,
Jonathan. OpenFlow: Enabling Innovation in Cam-
pus Networks. SIGCOMM Comput. Commun. Rev.,
38(2):69–74, March 2008.

[57] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun
Lee, and Minlan Yu. Silkroad: Making Stateful Layer-4
Load Balancing Fast and Cheap Using Switching ASICs.
In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, pages 15–28,
2017.

[58] Microsoft Azure. Azure DDoS Protection.
https://azure.microsoft.com/en-us/services/
ddos-protection/.

[59] Robert HB Netzer and Jian Xu. Necessary and sufficient
conditions for consistent global snapshots. IEEE Trans-
actions on Parallel and distributed Systems, 6(2):165–
169, 1995.

[60] NVIDIA. Spectrum. https://www.nvidia.
com/en-us/networking/ethernet-switching/
spectrum-sn4000/.

[61] Parveen Patel, Deepak Bansal, Lihua Yuan, Ashwin
Murthy, Albert Greenberg, David A. Maltz, Randy Kern,
Hemant Kumar, Marios Zikos, Hongyu Wu, Changhoon
Kim, and Naveen Karri. Ananta: Cloud Scale Load
Balancing. In Proceedings of the ACM SIGCOMM
2013 Conference on SIGCOMM, SIGCOMM ’13, page
207–218, New York, NY, USA, 2013. Association for
Computing Machinery.

[62] Karin Petersen, Mike J. Spreitzer, Douglas B. Terry,
Marvin M. Theimer, and Alan J. Demers. Flexible
Update Propagation for Weakly Consistent Replication.
SIGOPS Oper. Syst. Rev., 31(5):288–301, oct 1997.

[63] Raghavan, Barath and Vishwanath, Kashi and Ramab-
hadran, Sriram and Yocum, Kenneth and Snoeren, Alex
C. Cloud Control with Distributed Rate Limiting. In
Proceedings of the 2007 Conference on Applications,
Technologies, Architectures, and Protocols for Computer
Communications, SIGCOMM ’07, page 337–348, New
York, NY, USA, 2007. Association for Computing Ma-
chinery.

[64] Shriram Rajagopalan, Dan Williams, and Hani Jamjoom.
Pico Replication: A High Availability Framework for
Middleboxes. In Proceedings of the 4th Annual Sympo-
sium on Cloud Computing, SOCC ’13, New York, NY,
USA, 2013. Association for Computing Machinery.

[65] Shriram Rajagopalan, Dan Williams, Hani Jamjoom,
and Andrew Warfield. Split/Merge: System Support for
Elastic Execution in Virtual Middleboxes. In Presented
as part of the 10th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 13), pages
227–240, Lombard, IL, 2013. USENIX.

https://azure.microsoft.com/en-us/services/ddos-protection/
https://azure.microsoft.com/en-us/services/ddos-protection/
https://www.nvidia.com/en-us/networking/ethernet-switching/spectrum-sn4000/
https://www.nvidia.com/en-us/networking/ethernet-switching/spectrum-sn4000/
https://www.nvidia.com/en-us/networking/ethernet-switching/spectrum-sn4000/

[66] Arik Rinberg and Idit Keidar. Intermediate value lin-
earizability: A quantitative correctness criterion. In
Hagit Attiya, editor, 34th International Symposium on
Distributed Computing, DISC 2020, October 12-16,
2020, Virtual Conference, volume 179 of LIPIcs, pages
2:1–2:17. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2020.

[67] Arik Rinberg, Alexander Spiegelman, Edward Bort-
nikov, Eshcar Hillel, Idit Keidar, Lee Rhodes, and Hadar
Serviansky. Fast concurrent data sketches. In Proceed-
ings of the 25th ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming, PPoPP ’20,
pages 117–129, 2020.

[68] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob
Nelson, Panos Kalnis, Changhoon Kim, Arvind Kr-
ishnamurthy, Masoud Moshref, Dan Ports, and Peter
Richtarik. Scaling distributed machine learning with In-
Network aggregation. In 18th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
21), pages 785–808. USENIX Association, April 2021.

[69] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and
Marek Zawirski. Conflict-Free Replicated Data Types.
In Proceedings of the 13th International Conference
on Stabilization, Safety, and Security of Distributed Sys-
tems, SSS’11, page 386–400, Berlin, Heidelberg, 2011.
Springer-Verlag.

[70] S. Shenker and J. Wroclawski. RFC2215: General Char-
acterization Parameters for Integrated Service Network
Elements, 1997.

[71] Justine Sherry, Peter Xiang Gao, Soumya Basu, Auro-
jit Panda, Arvind Krishnamurthy, Christian Maciocco,
Maziar Manesh, João Martins, Sylvia Ratnasamy, Luigi
Rizzo, and Scott Shenker. Rollback-Recovery for Mid-
dleboxes. In Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication, SIG-
COMM ’15, page 227–240, New York, NY, USA, 2015.
Association for Computing Machinery.

[72] Jeff Terrace and Michael J. Freedman. Object Stor-
age on CRAQ: High-Throughput Chain Replication for
Read-Mostly Workloads. In Proceedings of the 2009
Conference on USENIX Annual Technical Conference,
USENIX’09, page 11, USA, 2009. USENIX Associa-
tion.

[73] The P4 Language Consortium. P416 Language Specifi-
cation. https://p4.org/p4-spec/docs/P4-16-v1.
2.0.html.

[74] The P4.org Architecture Working Group. P416
Portable Switch Architecture (PSA). https://p4.org/
p4-spec/docs/PSA-v1.1.0.html.

[75] Muhammad Tirmazi, Ran Ben Basat, Jiaqi Gao, and
Minlan Yu. Cheetah: Accelerating Database Queries
with Switch Pruning. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’20, page 2407–2422, New York, NY,
USA, 2020. Association for Computing Machinery.

[76] Robbert van Renesse and Fred B. Schneider. Chain
Replication for Supporting High Throughput and Avail-
ability. In Proceedings of the 6th Conference on Sympo-
sium on Operating Systems Design and Implementation,
OSDI’04, page 7, USA, 2004. USENIX Association.

[77] Shinae Woo, Justine Sherry, Sangjin Han, Sue Moon,
Sylvia Ratnasamy, and Scott Shenker. Elastic Scaling
of Stateful Network Functions. In 15th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 18), pages 299–312, Renton, WA, April 2018.
USENIX Association.

[78] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi
Gong, Yang Zhou, Rui Miao, Xiaoming Li, and Steve
Uhlig. Elastic sketch: Adaptive and fast network-wide
measurements. In Proceedings of the 2018 Conference
of the ACM Special Interest Group on Data Communi-
cation, pages 561–575, 2018.

[79] Haifeng Yu and Amin Vahdat. Design and Evaluation
of a Continuous Consistency Model for Replicated Ser-
vices. OSDI’00, USA, 2000. USENIX Association.

[80] Minlan Yu, Lavanya Jose, and Rui Miao. Software
defined traffic measurement with opensketch. In Nick
Feamster and Jeffrey C. Mogul, editors, Proceedings
of the 10th USENIX Symposium on Networked Systems
Design and Implementation, pages 29–42, April 2013.

[81] Minlan Yu, Jennifer Rexford, Michael J Freedman, and
Jia Wang. Scalable flow-based networking with DI-
FANE. ACM SIGCOMM Computer Communication
Review, 40(4):351–362, 2010.

[82] Zeno, Lior and Ports, Dan R. K. and Nelson, Jacob and
Silberstein, Mark. SwiShmem: Distributed Shared State
Abstractions for Programmable Switches. In Proceed-
ings of the 19th ACM Workshop on Hot Topics in Net-
works, HotNets ’20, page 160–167, New York, NY, USA,
2020. Association for Computing Machinery.

[83] Menghao Zhang, Guanyu Li, Shicheng Wang, Chang
Liu, Ang Chen, Hongxin Hu, Guofei Gu, Qianqian Li,
Mingwei Xu, and Jianping Wu. Poseidon: Mitigating
volumetric ddos attacks with programmable switches.
In the 27th Network and Distributed System Security
Symposium (NDSS 2020), 2020.

https://p4.org/p4-spec/docs/P4-16-v1.2.0. html
https://p4.org/p4-spec/docs/P4-16-v1.2.0. html
https://p4.org/p4-spec/docs/PSA-v1.1.0.html
https://p4.org/p4-spec/docs/PSA-v1.1.0.html

A Theoretical Analysis

The SDW protocol supports stream-order invariant data types
like sketches. Variables of this type support three API func-
tions: (1) UPDATE(E) – handling a single addition of element
E, (2) QUERY() – returns a value based on the internal state,
and MERGE('′) – merges the state of '′ with that of the cur-
rent variable. A requirement of any variable ' fitting this
model is that the QUERY result depends only on the set of
elements that were ingested before it (either by an UPDATE
or a MERGE), and not their order. We say that a query reflects
an update, if the update altered the state before the query
executed.

An execution of an algorithm renders a history �, which is
a series of invoke and response events of the three API func-
tions. In a sequential history each invocation is immediately
followed by its response. The sequential specificationH of a
variable is its set of allowed sequential histories.

A linearization of a concurrent execution f is a history
� ∈ H such that after adding responses to some pending in-
vocations and removing others, � and f consist of the same
invocations and responses and � preserves the order between
non-overlapping operations [28]. If every concurrent execu-
tion has a linearization, we say that the variable is lineariz-
able. For randomized variables we require a stronger property,
called strong linearizability. The qualifier “strong” means that
the linearization points are not determined post-facto, which
is necessary in randomized variables [22].

A relaxed property of a variable is an extension of its se-
quential specification to allow for more behaviors. We adopt
the notion of A-relaxed strong linearizability from [67], a vari-
ant of the relaxation defined by Henzinger et al. [27], brought
here for completeness. Intuitively, an A-relaxed variable al-
lows a query to return a result based on all but at most A
updates that happened before it.

Definition A.1. A sequential history � is an A-relaxation of a
sequential history � ′, if � is comprised of all but at most A of
the invocations in � ′ and their responses, and each invocation
in � is preceded by all but at most A of the invocation that
precede the same invocation in � ′. The A-relaxation ofH is
the set of histories that have A-relaxations inH , denotedH A .

Our SDW protocol is described in §6.3, and its pseudo-code
is presented in Algorithm 1. To prove that Algorithm 1 is A-
relaxed strongly linearizable, we first prove a helper lemma:

Lemma 1. Consider a history � arising from a concurrent
execution of Algorithm 1, and some completed update D ∈ �
executed by ?8 . Let F be the value of F8= during D. Update
D is reflected by every query @ on any ? 9 , in every window
F′ ≥ F +2.

Proof. Let � be a history arising from a concurrent execution
of Algorithm 1, and let D ∈ � be some completed update

executed by ?8 . Let F be the value of F8= during the update’s
execution on ?8 .

Update D is added to >1 9 B[F mod 3] on Line 12. On
Line 39, >1 9 B[(F +2) mod 3] is broadcast to all switches,
specifically to some switch ? 9 (as ?8 retains the update in the
same place that is merges received variables, this holds for
9 = 8).

The next time ? 9 advances on Line 35, it enters window
F′ = F + 2. Note that the variable that was queried in the
previous window (F′−1) is the same variable that reflected
D. This variable is the one queried in round F′, therefore
reflected in round F′ = F +2.

We now prove by induction that in round F′′ = F′+ : , D is
reflected by a query in round F′′ on ? 9 . The base is for : = 0,
and has been prove.

Assume the hypothesis holds forF′+ ;, we prove forF′+ ;+
1. In round F′+ ;, D is reflected by >1 9 [(F′+ ; +1) mod 3].
On Line 37, ? 9 merges this variable into >1 9 [((F′+ ;+1) +1)
mod 3], which is the variable queried in this round.

As this induction is true for all : ≥ 0, it holds for any
F′′ ≥ F′, proving the lemma. �

The following corollary follows directly from Lemma 1:

Corollary 1.1. Let � be a history arising from a concur-
rent execution of Algorithm 1, and let @ ∈ � be some query
completed by ?8 . Let F be the value of F8= during its execu-
tion. Query @ reflects all updates occurring in any window
F′ ≤ F−2.

Note: A system where linearizability holds for sub histo-
ries including a single query is sometimes called Ordered
Sequential Consistency (OSC) [46], this is commonly used in
systems, e.g., ZooKeeper [31].

Finally, we define the operation projection of a history
� and a set of operations $ as the same history containing
only invocations and responses of operations in $. We denote
this � |$ Using these formalisms we can prove the following
theorem:

Theorem 2. Consider a history � arising from a concurrent
execution of Algorithm 1, and some query @ ∈ �. Let * be
the set of updates in �. The history of � |*∪{@ } is A-relaxed
strongly linearizable.

Proof. Let � be a history arising from a concurrent execu-
tion of Algorithm 1, let @ ∈ � be some query by ?8 , and let
* be the set of all updates in �. Denote � |*∪{@ } as � ′. We
show that � ′ is A-relaxed strongly linearizable with respect
to H A , for A = 2#�. To prove this, we show the existing of
two mappings, 5 and 6, such that 5 maps operations in � ′

to visibility points, and 6 maps operations in � ′ to lineariza-
tion points. Intuitively, visibility points are the time in the
execution when an update is visible to a query, i.e., the query
reflects the update. Bounding the number of preceding but
not yet visible updates gives the relaxation.

We show that (1) 5 (� ′) ∈ H , and (2) 6(� ′) is an A relax-
ation of 5 (� ′). Together, this implies the theorem.

The visibility points (5 (� ′)) are as follows:
• For the query, its visibility point is its return.
• For an update returning false at time C, its visibility point

is C.
• For an update returning true at time C, let F be ?8’s value

of F8= at time C. The visibility point is the first time after
C that ?8’s value of F8= is F8=+2.

Note that in the latter case, the visibility point is after the
update returns, so 5 does not preserve real-time order.

The linearization points (6(� ′)) are as follows:
• An update’s linearization point is its return, either true

or false.
• A query’s linearization point is its return.

By definition, the linearization points as defined by 6(� ′)
aren’t decided post-facto – rather the linearization is a pre-
determined point in the execution.

Consider some update D ∈ � ′ executed on some ? 9 that
returns true. Let F be ? 9 ’s value of F8= during its execution.
Let F′ be ?8’s value of F8= during @’s execution. We show
that if F ≤ F′−2, then @ observes D, and if F > F′−2, then
@ doesn’t observe D.

From the definition of Algorithm 1, for any F8=8 on ?8 and
F8= 9 on ? 9 , |F8=8 −F8= 9 | ≤ 1.

If F = F′ − 2, then when ? 9 added D to its local buffers,
it did so to >1 9 [F mod 3]. As |F8=8 − F8= 9 | ≤ 1, ? 9 ad-
vanced at least 1 window from F. When it did so, it sent
>1 9 [F mod 3] to ?8 . In window F′−1, ?8 merges the update
into >1 9 [F′+1 mod 3]. In window F′ this same variable is
queried, thus @ observes D. If F ≤ F′−3, then the update is
merged into some index of the variables array, and is copied
over until it is reflected in all 3 of them, and specifically re-
flected in >1 9 [F′+1 mod 3] in window F′.

If F ≥ F′−1, then when ? 9 added D into its local buffer
it did so to >1 9 [F mod 3]. This update is sent to ?8 only
in window F +1, and therefore isn’t reflected in >1 9 [F′ +1
mod 3] in window F′.

Therefore, @ reflects all updates that return true that hap-
pened during any window F ≤ F′−2. As there are at most
� updates that return true in any window, @ reflects all but at
most 2#� updates that precede it in �. Therefore, 6(� ′) is
an 2#�-relaxation of 5 (� ′).

As the query returns a value based on the updates that
happened before it, and each access to the process local state is
down sequentially, @ returns a value that reflects all successful
updates that happen before it in 5 (� ′). Therefore, 5 (� ′) ∈
H . �

Intuitively, every query returns a value reflecting a sub-
stream of its preceding and concurrent updates, consisting of
all but at most A successful ones. The upper bound A on the
number of “missing” updates is of vast importance, without it

the drift between one switch and another can grow in an un-
bounded fashion. For example, consider a counter distributed
among two switches running an eventually synchronous al-
gorithm. One switch can increment the counter an arbitrarily
large number of times, while the other returns 0 on every
query – the promise of eventual synchrony is too weak.

Theorem 2 ensures that every history consisting of a single
query and all updates is A-relaxed strongly linearizable, which
in many cases preserves some relaxation of the error bounds.
For example, Rinberg et al. [67] show that, under a weak ad-
versary, a K-Minimum Value (KMV) \ sketch [5] has an error
of at most twice that of the sequential one. Another example
is a relaxed Quantiles sketch [2], which has an additive error
of A/=− (An)/= with some tuning parameter n , where A is the
relaxation and = is the stream size. Thus, the impact of the
relaxation diminishes as the stream size grows.

Algorithm 1: Algorithm running on switch ?8 .

1 initialization:
2 win← 0
3 count← 0
4 objs← [>1 9 .8=8C (), >1 9 .8=8C (), >.8=8C ()]
5 buf← {}
6 rcvs← {}
7 acks← {}
8 Function Update(E):
9 if count == � then

// Write variable is full

10 return false
11 else
12 objs [win mod 3] .D?30C4(E) // Add to the write variable

13 count← count+1
14 return true

15

16 Function Query():
17 return objs [(win+1) mod 3] .@D4AH() // Serve query from read variable

18

19 on receive “(>′,F′)” from ? 9 :
// Sync

20 if F′ > win then
21 buf← buf∪ {(>′,F′)} // Buffer messages from future windows

22 else
23 rcvs← rcvs∪ { 9}
24 objs [(win+2) mod 3] .<4A64(>′) // Merge into sync buffer

25 send “ack” to ? 9

26 check_done()

27

28 on receive “ack” from ? 9 :
29 acks← acks∪ { 9}
30 check_done()

31

32 Function check_done():
33 if |rcvs| == = && |acks| == = then
34 count← 0
35 win← win+1 // Rotate right

36 >′← objs [win mod 3]
37 objs [(win+1) mod 3] .<4A64(>′) // Add the updates from window F to the current state

38 objs [win mod 3] ← >.8=8C () // Clear write variable

39 broadcast “(objs [(win+2) mod 3] ,win)” // Send sync message

40 rcvs← {8}
41 acks← {8}
42 forall (>′,F′) in buf do

// Handle buffered messages

43 rcvs← rcvs∪ { 9}
44 objs [(win+2) mod 3] .<4A64(>′)
45 send “ack” to ? 9

46 buf← {}

	Introduction
	Background: Programmable Switches
	Motivation
	Application Consistency Requirements
	Strong Consistency
	Weak (Eventual) Consistency
	Bounded-Delay Consistent Snapshots

	SwiSh Abstractions
	In-Switch Replication Protocols
	Strong-Read Optimized (SRO)
	Eventual Write-Optimized (EWO)
	Strong Delayed-Writes (SDW)
	Handling Failures

	Design
	Replication Message Exchange
	Strong Delayed-Writes (SDW)

	Implementation
	Strong Read-Optimized (SRO)
	Eventual Write-Optimized (EWO)
	Distributed NFs
	Implementation Details

	Evaluation
	End-to-end benchmarks
	Analysis

	Related Work
	Conclusions
	Theoretical Analysis

