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ABSTRACT
Programmable switches provide an appealing platform for running
network functions (NFs), such as NATs, firewalls, and DDoS de-
tectors, entirely in data plane, at staggering multi-Tbps processing
rates. However, to be used in real deployments with a complex multi-
switch topology, one NF instance must be deployed on each switch,
which together act as a single logical NF. This requirement poses
significant challenges in particular for stateful NFs, due to the need
to manage distributed shared NF state among the switches. While
considered a solved problem in classical distributed systems, data-
plane state sharing requires addressing several unique challenges:
high data rate, limited switch memory, and packet loss.

We present the design of SwiShmem, the first distributed shared
state management layer for data-plane P4 programs, which facilitates
the implementation of stateful distributed NFs on programmable
switches. We first analyze the access patterns and consistency re-
quirements of popular NFs that lend themselves for in-switch execu-
tion, and then discuss the design and implementation options while
highlighting open research questions.
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1 INTRODUCTION
In recent years, programmable data-plane switches [3, 33] have
emerged as a powerful platform for packet processing, capable of
running complex user-defined functionality at Tbps rates. Recent
research has shown that these switches can implement the advanced
network functions (NFs) that power modern cloud networks, such
as NATs, load balancers [19, 32], and DDoS detectors [25]. These
in-switch implementations show great promise for cloud operators,
as programmable switches can operate at orders of magnitude higher
throughput levels than the server-based implementations used today,
potentially heralding a massive efficiency improvement.

Unfortunately, a key challenge remains largely unaddressed: while
prior work shows the potential of programmable switches to execute
NFs efficiently, they primarily do so on a single switch. Realistic
data center deployments require NFs to be distributed over multi-
ple switches: to handle higher throughput than a single switch can
support, to tolerate switch failure, and to process traffic that passes
through many network paths. A firewall monitoring incoming data
center traffic, for example, cannot be implemented by routing all
traffic through a single switch. Network functions must therefore be
implemented in a distributed manner.

Building distributed NFs for programmable switches is challeng-
ing because most of today’s NFs are stateful and demand consistency
and reliability. If a load balancer assigns a connection to a partic-
ular destination, subsequent packets for that connection must be
routed accordingly – even if they arrive at different switches or if
the original switch fails.

Distributed state management is, in general, a hard problem, and
it becomes even harder in the context of programmable switches.
In the “traditional” software-based NF realm, several methods have
been proposed to address the challenges of distributed state. These
include remote access to centralized state storage [17] and dis-
tributed object abstractions [46], along with fault tolerance mecha-
nisms [37, 42]. Unfortunately, few of these ideas transfer directly to
the programmable switch environment, which faces three daunting
new challenges: (1) it must be able to handle packets at line rate,
greatly limiting available per-packet computation; (2) it faces even
stricter storage requirements, with only ∼10 MB state available from
the data-plane; and (3) it lacks mechanisms for durable storage or
reliable communication (even TCP is unavailable).

This paper argues that generic abstractions for state management
can greatly simplify the design of distributed in-switch network
function applications. Our goal is to provide a “one big switch” ab-
straction for stateful NFs that enables developers to write a program
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that appears to run on a single reliable switch, even though it actu-
ally executes across multiple switches. We believe that providing
general abstractions, rather than ad-hoc application-specific solu-
tions, is essential to the adoption of this technology in production
environments.

We describe the design of such a generic distributed shared state
mechanism, SwiShmem. Inspired by distributed shared memory
abstractions for distributed systems [20, 28], SwiShmem provides
replicated shared registers in a way that is tailored to the needs of
NFs. It supports strong consistency for read-intensive registers and
eventual consistency for frequently-written registers, two modes
which we argue capture the needs of most existing NFs that lend
themselves to efficient in-switch implementation.

SwiShmem introduces new replication protocols which are opti-
mized for the programmable switch environment. These protocols
follow two main design principles: (1) minimizing the necessary
buffer space due to the scarcity of switch memory, (2) exploiting
Tbps network bandwidth available for inter-switch communica-
tion. Thus, while they largely inherit the basic mechanisms employed
in traditional distributed systems, such as chain replication, the proto-
cols explicitly trade ample network bandwidth for in-switch memory
space.

In summary, this work makes the following contributions:
• Analysis of the memory consistency requirements and access

patterns of common NFs suitable for in-switch execution
• New distributed protocols that provide SwiShmem, an in-

switch distributed shared register abstraction to facilitate
shared state management across multiple switches

• The implementation considerations for SwiShmem on real
programmable switches

2 BACKGROUND: PISA SWITCHES
The protocol-independent switch architecture (PISA) [2] is the stan-
dard for programmable data-plane switches. PISA defines two main
parts to packet processing. The first is the parser which parses rel-
evant packet headers, and the second is a pipeline of match-and-
action stages. Parsed headers and metadata are then processed by
the pipeline. The small (∼ 10 MB) switch memory is split between
pipeline stages.

PISA compliant devices are programmed using the P4 language.
P4 defines a set of high-level objects that consume switch memory:
tables, registers, meters and counters. While registers, meters, and
counters can be modified directly from the data-plane, tables require
control-plane to perform update. A data-plane program processes
packets which can be sent to remote destinations, to the control-plane
processor on the switch, or to the switch itself (called recirculation).

Switches process packets atomically: if a packet generates mul-
tiple local writes to different locations, these updates are atomic in
the sense that the next processed packet will not see an intermediate
view on the state. This property allows implementing complex dis-
tributed protocols with concurrent state updates without locks (for
example, chain replication with pending writes (§6.1)).

3 MOTIVATION
3.1 The Case for Programmable Switches as

Network Function Processors
The modern data center network incorporates a diverse array of
network functions beyond simple packet forwarding. Features like
network address translation (NAT), firewalls, load balancers, and
intrusion detection systems are central to the functionality of to-
day’s cloud platforms. These functions are stateful packet process-
ing operations, and today are generally implemented using software
middleboxes that run on commodity servers, often at significant cost.

Consider, for example, a stateful load balancer, which aims to
uniformly route TCP connections among multiple destination hosts.
It receives incoming connections, assigns them to a destination
server, and forwards encapsulated traffic to that server. Because it
is essential for subsequent packets in the same TCP connection to
be routed to the same server (a property dubbed per-connection
consistency), the load balancer must track the connection-to-server
mapping. Load balancers like this are in widespread use at major
cloud providers [7, 34], and handle a significant fraction of a data
center’s incoming traffic. Implemented on commodity servers, they
require large clusters to support their massive workload.

Programmable data-plane switches offer an appealing alternative
to commodity servers for implementing network functions at lower
cost. Researchers have shown that new programmable pipelines can
be used to implement many types of network functions. For data
center operators, the benefit is clear: a major reduction in the cost of
NF processing. Whereas a software-based load balancer can process
approximately 15 million packets per second on a single server [7],
a single switch can process 5 billion packets per second [33]. Put
another way, a programmable switch has a price, energy usage, and
physical footprint only slightly higher than a single server, but can
process several hundred times as many packets.

3.2 Distributed Switch Deployments
Although prior research has focused on showing that NF functional-
ity can be implemented on a single switch [25, 32], realistic data cen-
ter deployments universally require multiple switches. We see two
possible deployment scenarios. The NF processing can be placed in
switches in the network fabric. In order to capture all traffic, the load
balancer application would need to run on all possible paths, e.g.,
by being deployed to every core switch or every aggregation switch.
Alternatively, a dedicated cluster of switches (perhaps located near
the ingress point) could be used to serve purely as NF accelerators.
Both are inherently distributed deployments: they require multiple
switches in order to (1) scale out, (2) tolerate individual switch
failures, and (3) capture traffic across multiple paths.

The challenge of a distributed NF deployment comes from the
need to manage the state shared among the NF instances. Processing
a packet at one switch may require reading or updating state that
is also accessed by other switches. For example, the connection-
to-server mapping recorded by the load balancer must be available
when later packets for that connection are processed – even if they
are processed by a different switch, or the original switch fails.

Shared state is a necessity for distributed stateful processing. In
some cases, it may suffice to shard state between switches – for



example, to store the load balancer’s connection mapping only on
the switch that assigned it, on the assumption that future packets
for that flow will be processed by the same switch. This approach,
however, does not work for NFs that require global state, e.g., to
add a per-client rate limiter to the load balancer. It also falls short
if a flow is routed through a different switch, something that may
occur in various failure scenarios – or in the normal case, if recent
proposals for adaptive routing [10, 14] or multi-path TCP [8, 36] are
adopted.

To support our goal of a “one big switch” abstraction, SwiShmem
provides a shared state mechanism capable of supporting global
state: any object can be read or written from any switch. SwiShmem
transparently replicates state updates to other switches for fault
tolerance and remote access.

3.3 The Case for Data-plane Replication
Control-plane mechanisms are the common practice of replicating
the switch state [1, 4, 22, 31]. However, the scalability limitations of
this approach have been well recognized, and several recent works
focus on improving it by distributing the control-plane logic across
a cluster of machines or switches [22, 48]. SwiShmem proposes
instead to replicate the switch data plane.

Data plane replication makes it possible to support applications
that read or modify stateful variables on every packet. This is the
new capability of programmable data-plane switches that makes it
possible to implement more sophisticated network functions than tra-
ditional control-plane SDN. As we will see in §4, these applications
use state in diverse ways. Some are read-mostly; others update state
on every packet. Some require strong consistency between switches
to avoid exposing inconsistent states to applications (e.g., a network
sequencer for accelerating storage systems [27]); others can tolerate
weak consistency (e.g., measurement or monitoring applications that
already provide approximate results [25, 47]). Managing this state in
a programmable data-plane switch requires a new approach: replica-
tion protocols that run in the control plane cannot operate at this rate,
so a control-plane solution would cause significant gaps between
replicas, potentially affecting normal application behavior and the
system availability. SwiShmem provides replication mechanisms
for different classes of data that operate at the speed of the switch
data-plane.

At the same time, data-plane replication offers an opportunity
to build a more efficient replication mechanism because it can take
advantage of unique programmable hardware characteristics that
are not available in a traditional control-plane. For example, the
atomic packet processing property enables a multi-location atomic
write to the shared state. We leverage this feature to enable fast
processing of acknowledgements entirely in the data-plane for our
strongly-consistent replication protocol (§6.1).

3.4 Challenges of In-Switch Replication
Making switch state updates visible and fault tolerant is the purview
of a replication protocol. This is one of the classic problems in server-
based distributed systems, with many such protocols having been
extensively studied in a general setting [24, 43, 45], as well as specif-
ically targeting distributed execution of network functions [17, 42].
Applying them to the programmable switch domain presents new

challenges due to the high processing throughput but low memory
capacity of the switches and unreliable connection between them.

To understand these challenges, consider Chain Replication [45].
This model organizes replicas into a chain. Write requests are pro-
cessed first by the head of the chain, which sequences the requests,
and then are propagated along the chain. Once the write request
propagates to the tail, an acknowledgement is generated and sent to
the client. Reads are sent to the tail, which always returns the latest
completed write. Thus, it provides linearizability [13]. While this
protocol works well for servers, several limitations of programmable
switches make direct implementation problematic:
Unreliable communication. To ensure that updates are applied to
all replicas in the same order, chain replication relies on TCP to
provide a reliable, in-order communication channel. Programmable
switches cannot run TCP in the data-plane.
Blocking requests. Strongly consistent replication protocols require
that an update is recorded by other replicas before its results can
be externalized. For NFs, this means that the output packet must
be buffered until the write is acknowledged by other switches. Pro-
grammable switches lack the memory to buffer packets for any
significant amount of time.
Memory usage. Replication protocols often include optimizations
or design choices that assume large amounts of memory are avail-
able, something that is very much not the case on a programmable
switch. For example, each server in chain replication tracks the set
of outstanding write operations in order to optimize failure recovery:
if the chain is broken, only these operations need to be replayed. On
a switch, using precious memory for this purpose, if even possible,
is unlikely to be the right tradeoff.

4 APPLICATIONS
Global shared registers with linearizable consistency guarantees
are a strong programming abstraction, but they come with a heavy
performance cost. Strongly consistent replication protocols require
blocking operations to communicate with remote replicas, a proposi-
tion that is costly in general and, as discussed previously, particularly
difficult on switches. SwiShmem provides different levels of consis-
tency targeted at the needs of NF applications.

To support this design, we study the access patterns and consis-
tency requirements of NF applications that have been built on PISA
applications. Table 1 summarizes the results. We observe two com-
mon patterns: read-intensive workloads that can tolerate expensive
writes, and write-intensive workloads that can tolerate inconsisten-
cies. Below, we describe several in-switch applications and how they
use state.

4.1 Read-intensive NFs

Network Address Translators (NATs) share the connection table
among the NF instances. The table is queried on every packet, but
only updated when a new connection is opened; table rows require
strong consistency, otherwise leading to broken client connections
in case of multi-path routing or switch failure. NATs generally also
manage a pool that tracks unassigned ports; however, different port
ranges can be assigned to different switches to avoid sharing this
state.



Application State Write frequency Read frequency Consistency

Read-intensive

NAT Translation table New connection Every packet Strong
Firewall Connection states table New connection Every packet Strong
Intrusion prevention system (IPS) Signatures Low Every packet Weak
L4 load-balancer Connection-to-DIP mapping New connection Every packet Strong

Write-intensive
DDoS detection Sketch Every packet Every packet Weak
Rate limiter Per-user meter Every packet Every window Weak

Table 1: NFs classified by their access pattern to shared data and their consistency requirements.

Stateful firewalls monitor connection states to enforce context-
based rules. These states are stored in a shared table, updated as
connections are opened and closed, and accessed for each packet
to make filtering decisions. Like the NAT, the firewall NF requires
strong consistency to avoid incorrect forwarding behavior.

Intrusion Prevention Systems (IPS) [26] monitor traffic by contin-
uously computing packet signatures and matching against known
suspicious signatures. In case of too many matches, traffic is dropped
to prevent the intrusion. This application can tolerate some transient
inconsistencies: it is acceptable for a few additional malicious pack-
ets to go through immediately after signatures are updated.

L4 load balancers [32], as we have already discussed, assign in-
coming connections to a particular destination IP, then forward sub-
sequent packets to the appropriate destination IP. Per-connection
consistency (PCC) requires that once an IP is assigned to a connec-
tion, it does not change, implying a need for strong consistency of
application state.

Observation 1. Although these workloads require strong consis-
tency, they update state infrequently, making a costly replication
protocol more tolerable. Indeed, most of these examples use switch
data structures that must be modified through the control plane. We
leverage this observation when designing the replication protocol
for this class of NFs.

4.2 Write-intensive NFs

DDoS detection [25] requires tracking the frequency of source
and destination IPs using approximate sketch data structures. The
sketches are updated and read on every packet, triggering an alarm
when the analysis of the IP frequencies raises suspicion of the attack.
Approximate sketches have been shown to behave correctly under
eventual consistency [39].

Rate limiters monitor and restrict the aggregated bandwidth of flows
that belong to a given user. The application maintains a per-user me-
ter that is updated on every packet. Periodically, the meters are read
to identify users exceeding their bandwidth limit and enforce restric-
tions. This application can tolerate some transient inconsistencies: it
is acceptable for a few additional packets to go through immediately
after the user reaches the bandwidth limit.

Observation 2. The aforementioned write-intensive workloads can
tolerate weakly consistent data, permitting more efficient replication
protocols. A particularly common use case is a shared counter, which
is especially well-suited for eventually consistent protocols because
it has commutative increment operations.

5 SWISHMEM ABSTRACTIONS
SwiShmem provides the abstraction of shared registers to programmable
switches. This section describes the interface and the types of se-
mantics it offers for shared data.

System model. We consider a system of many switches, each acting
as a replica of shared state. They are able to communicate via the
network, and we assume a standard failure model: packets can be
dropped, and links and switches may fail.

Data model. The basic unit of shared state is a register. We begin by
assuming that each register is replicated on every switch (we discuss
extensions for partitioning and migrating state in §7). SwiShmem
registers are read and modified through a replication protocol; a
compiler could be used to translate regular P4 register accesses into
SwiShmem operations. SwiShmem supports three types of registers
which have different semantics and are accessed through different
protocols:

(1) Strong Read Optimized (SRO) variables provide strong con-
sistency (linearizability)

(2) Eventual Read Optimized (ERO) variables provide slightly
weaker consistency in exchange for lower latency

(3) Eventual Write Optimized (EWO) variables have low cost for
both reads and writes, but provide only eventual consistency

6 IN-SWITCH REPLICATION PROTOCOL
We describe here the protocols for each of the three types of variables.
Initially, we assume switches do not fail; we relax this assumption
in §6.3.

6.1 Read-Optimized Protocols (SRO & ERO)
SRO registers provide linearizability for in-switch applications. The
SRO protocol is based on chain replication [45], adapted to an in-
switch implementation. Switches are ordered to form a chain. This
protocol supports both registers as well as state that can be read (e.g.,
counters) or written (e.g., tables) only by the control plane.

Writes are handled by processing an input packet P to determine
the output packet P′ and associated write set Q. Rather than being
applied and sent immediately, both P′ and Q are forwarded to the
control plane, which buffers P′ until the write is completed. It then
sends a write request to the switch at the head of the chain, and
retries it if a timely response is not received.

If Q includes only data-plane accessible registers, in all other
switches, the update protocol is processed entirely in the data plane.
Otherwise, the update protocol is processed by the control-plane
of each switch in the chain. The head assigns a per-key sequence
number to the write request to ensure consistent order of concurrent



writes, applies the update locally, and propagates it down the chain.
Each switch in the chain applies updates only if they are in order,
and forwards them to the next switch in the chain. It also sets a
pending bit associated with the register, indicating that a write is in
progress. Once the write request arrives at the tail switch, the tail
sends an acknowledgment to the writer, which can release its output
packet, and to the other switches, which can clear their pending bit.

Reads are processed using the local copy of the register, and incur no
overhead, as long as the associated pending bit is not set.1 Otherwise,
the input packet P is forwarded to the tail of the chain, and processed
there; this guarantees that the latest committed version of the data is
used, and also avoids the need to buffer packets.

SRO provides per-register linearizability [13], because writes are
blocking and reads concurrent to writes are processed by the tail
node. Its write throughput is limited by the need to send packets
through the control plane.2 Note, however, that many read-intensive
NFs already require control plane involvement for their updates,
minimizing the additional cost.

Eventual Read Optimized (ERO). ERO is a variation of SRO
that provides eventual consistency by always performing reads lo-
cally [43], rather than forwarding them to the tail when there are
concurrent writes. This guarantees bounded read latency, and also
saves space by eliminating the need for pending bits. Otherwise, the
protocol is identical to SRO.

6.2 Eventual Write Optimized (EWO)
Both variants of the read-optimized protocol have a high write cost.
Because supporting both strong consistency and frequent updates is
fundamentally challenging, we offer relaxed-consistency registers.
This is acceptable for many write-intensive applications, as discussed
in §4. These variables support eventual consistency for arbitrary data,
and can provide stronger guarantees for certain specific types like
counters.

For EWO state, reads are always performed locally, and writes
are applied asynchronously. That is, when a switch receives a packet
P that modifies state, it modifies its local state, emits any output
packet P′ immediately, and asynchronously sends a write request to
the other switches. This faces two challenges: (C1) updates may get
lost; (C2) the receiving switch must merge the state update with its
current state.

Periodic synchronization. Unlike SRO, we cannot delegate the
problem of reliable write delivery to the control plane because it
does not scale for write-intensive workloads. Instead, switches peri-
odically synchronize each EWO register from the data plane. This
design choice avoids expensive buffering and re-transmission logic
in data-plane. It is a protocol well-suited for programmable switches,
as it takes advantage of the large available bandwidth and the small
total switch state. Together, these make regular full synchroniza-
tions feasible. For example, even if the switches synchronize 10 MB

1This read-only optimization is derived from CRAQ [43].
2One might ask why this requirement is needed, when NetChain [15] implements chain
replication entirely in the data plane. The difference is that NetChain is a service exposed
to clients, which are responsible for retrying operations. Our switches are effectively
the “clients” and need to be able to buffer output packets and retry requests, something
infeasible on the data plane.

(about the full memory size) every 1 ms, the total bandwidth con-
sumed by the synchronization would constitute 10MB

1ms×5T bps ∼ 1% of
the total switch bandwidth.

Merging. C2 is harder to solve; the correct way to merge writes
is application dependent. SwiShmem offers a default mode based
on last-writer-wins, and a special case for counters (and potentially
other data types) with stronger convergence semantics.

A generic answer to merging state is to assign an order to updates
and apply a last-writer-wins (LWW) policy. In LWW, each register
is associated with a version number. The merge function accepts an
update from another switch only for the version numbers larger than
the local one. Unique version numbers can be obtained by using a
switch ID as a tie breaker in addition to a timestamp attached to each
write request. The timestamp can be a Lamport clock [23] or a real-
time clock, which can be synchronized among the switches down
to tens of nanoseconds [18]. LWW provides eventual consistency,
but until it converges there may be inconsistent behavior as updates
propagate through the system.

In some cases, it is possible to merge updates more systemati-
cally. These are discussed extensively in the literature of Conflict-
Free Replicated Data Types (CRDTs), which offer strong eventual
consistency and monotonicity [41], which avoids counter-intuitive
scenarios such as a counter decreasing. Counters are a natural appli-
cation for this technique, as they are common in NFs (§4) and have a
straightforward CRDT design. An increment-only counter can be im-
plemented by maintaining a vector of counter values, one per switch.
To update a counter, a switch increments its own element; to read the
result, it sums all elements. To merge updates from another switch,
a switch simply takes the larger of the local and received value for
each element. Further extensions support decrement operations [41].
While many other CRDTs have been designed (e.g., sets and their
variants), whether they are useful for in-switch NF applications or
implementable in a switch data plane is an open question.

6.3 Handling failures
We now consider fail-stop switch failures. We assume that a central
controller can detect which switches have failed. We consider two
phases: (a) switch failover and (b) recovery.

SRO. When a switch fails, the chain becomes partitioned. Thus,
writes cannot be processed. First, we regain connectivity by repro-
gramming the routing of the failed switch neighbors. In-flight writes
that were dropped due to the failure, will eventually timeout and
re-sent by the control-plane of the writer switch. This is the same as
in the standard chain replication protocol.

To recover, we add a new switch to the end of the chain. The new
switch starts to process writes, but does not replace the tail. Some
control plane support is needed for the initial data transfer. The
control plane on one of the switches takes a snapshot of its shared
state, and then uses it to resend the write requests for each value
through the normal data plane protocol. These writes contain the
sequence number at the time of the snapshot, to prevent overwriting
new values with old ones. Once the new switch has acknowledged
all writes, it has the latest complete state, and can replace the tail in
processing reads.



EWO. The synchronization protocol is inherently robust to switch
and link failures. If a switch fails while broadcasting its updates,
any switch that did receive the update can then synchronize the
other switches, which will produce the same result. Thus, other than
removing the failed switch from the multicast group, no explicit
failover protocol is needed.

Recovery is equally simple: we add the new switch to the system
by adding it to the multicast group, and wait for the first periodic
synchronization mechanism to complete.

7 IMPLEMENTATION SKETCH

Implementing SRO. For SRO, we have to deal with state on both
the control plane and the data plane. We have two main areas of
state overhead. The first is in managing the chain during updates.
Each switch has a register array with a sequence number and an
in-progress bit per entry. Since this is relatively small, current pro-
grammable switches could support over a million entries; however,
since these state elements only protect other state updates, multi-
ple keys can share the same sequence number and in-progress bit,
reducing state requirements further.

The second state overhead is buffering write packets during state
updates to provide strong consistency, but our design uses the control
plane to implement that which has ample DRAM capacity.

Note that for mutating packets, the output packet is not sent
until the writes are acknowledged by the chain. Then, the packet
is injected back to the data plane and forwarded to its destination
(possibly via the switch at which it originally arrived).

For routing, each switch may store the IP addresses of the head
switch as well as its successor and predecessor. Alternatively, write
request packet headers may incorporate an IP list of the chain nodes.

Implementing EWO. For EWO, the state is stored only on the data
plane in pairs of registers. Each switch contains one register array for
each switch in the replica group; each register array stores a version
number and a value. Due to the atomicity of packet processing in
the switch (§2), the replication protocol can update both the version
number and the value atomically. Current programmable switches
can support large replica groups with a few tens of thousands of
entries, or small replica groups with over a million entries.

For mutating packets that write to counters, the switch updates
the version numbers and values in the register array for the local
replica, updates the packet and forwards it towards its destination.
Then, it uses egress mirroring and the multicast engine to broadcast
small write update packets containing only this switch’s new version
numbers and values to the other switches in the replica group.

In order to obtain eventual consistency in the face of lost update
packets, a periodic background task can be implemented using the
switch’s packet generator that iterates over the register array, forming
write update packets consisting of the version numbers and values
for each register, and forwarding each one to a randomly-selected
switch in the replica group.

Bandwidth overhead. Generating write requests for replication
consumes available bandwidth which may be substantial especially
in write-intensive workloads. Batching write requests may alleviate
this issue at the expense of reduced availability and consistency.

8 RELATED WORK
In-switch network functions. Previous studies have shown that of-
floading NFs to programmable switches, such as load-balancers [32]
and DDoS detectors [25], enables very high performance. However,
these projects were designed for a single switch. SwiShmem aims
to facilitate the deployment of these applications in a distributed
fashion.

In-switch acceleration. Previous works suggested in-switch accel-
eration for general-purpose applications such as key-value caches
[16, 29], replicated key-value stores [15], query processing [11] and
aggregations [40, 44]. SwiShmem can be useful for such general-
purpose applications too. For example, SwiShmem could be used
to implement the cache invalidation mechanism in DistCache. We
note, however, that due to the general-purpose nature of these appli-
cations, some of them feature a complex state, and require strong
semantics together with frequent updates, which SwiShmem does
not provide. Such requirements are less common in NFs; thus, we
target SwiShmem to facilitate the development of distributed NFs.

State management for NFs. State management and fault-tolerance
for NFs on servers has been well studied [9, 37, 38, 42, 46]. How-
ever, these techniques are infeasible in the context of programmable
switches. As an example, FTMB [42] suggests a rollback-recovery
technique for fault tolerance. Packets are logged and replayed in
case of a failure. However, due to the high processing throughput of
the switch, it is impractical to log every packet to external storage or
through the control plane.

In-switch coordination. NetChain [15] and P4xos [5] implement
coordination protocols running in the data plane to provide reliable
storage as a network service. Our work shares similar ideas, and
we believe that replicated storage as an internal building block for
NFs rather than an external service may be an even more compelling
application. Their properties (e.g., limitations to ∼100 byte objects)
are better matched for replicating NF state registers than arbitrary
applications.

Distributed network state. Managing distributed network state has
been well studied. Onix [22] distributes network-wide state among
multiple controllers. DIFANE [48] offloads forwarding decisions
to authority switches to alleviate load on the controller and to re-
duce per-flow memory usage in network switches. Mahajan et al.
[30] explore consistency semantics during network state updates.
While previous works focus on control-plane managed state, SwiSh-
mem specifically targets replication of mutable state of data-plane
programs.

Distributed network monitoring. Monitoring of network-wide prop-
erties requires coordinated, distributed computation across switches [12,
35]. Harrison et al. [12] propose a distributed heavy hitters detection
algorithm that minimizes the communication overheads between the
switches and the controller. Switches maintain local counters and
use them to trigger updates to a centralized controller. SwiShmem
can be used to implement similar algorithms while eliminating the
need for a centralized controller, thus potentially providing faster
response. Furthermore, distributed computation are needed if the
resources of a single switch are insufficient. Demianiuk et al. [6]
explore distributed flow metric computation on multiple switches
while overcoming network noise. It uses an adhoc protocol in which



the bits of each counter are effectively split between switches to
achieve larger capacity, and the system efficiently handles overflows.
SwiShmem focuses on a different application domain where the
state is replicated across switches rather than decomposed.

9 DISCUSSION & CONCLUSIONS
SwiShmem offers a systematic approach to state sharing among
programmable switches. While still in the initial stages of implemen-
tation, we believe that most of the ideas outlined here are feasible.
However, beyond the technical viability, it opens up a range of
novel design opportunities for applying general distributed system
principles and protocols while exploiting different trade-offs and
optimizing them to memory-constrained switch programs.

One current limitation of SwiShmem is the need for control plane
involvement to achieve strongly consistent writes. While in our
experience applications that require frequent writes and strong con-
sistency are rare among traditional NFs, some new in-network ap-
plications like sequencers [27] have such data. A way to implement
buffering and retransmission in the data plane – perhaps achievable
with creative use of existing switch features – would enable this
support.

In the current proposal, we have assumed that all state can be
stored on all switches. This allows the system to scale out in terms
of throughput, but not in terms of state. If all state is indeed used by
all switches, not much can be done about this. If there is locality, i.e.,
some state is normally used only by a subset of switches, it would not
need to be replicated to all switches. One way to manage this, which
we are currently exploring, is to use a central controller that acts as
a directory service (in the vein of cache coherence protocols [28]),
tracking which switches replicate which state, and migrating data as
needed.

We envision that SwiShmem is only the first step toward a broader
“one-switch abstraction” which aims to enable automatic transfor-
mation of a single-switch program into a distributed one. This goal
is not far fetched. For example, several prior works [21] already
showed how to find the shared state to elastically scale out the single
virtual NFs running on commodity servers. We hope to apply similar
ideas for multi-switch scaling of P4-based NFs.
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