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Modern web applications face 
immense scaling challenges

increasingly complex, personalized content

e.g. Facebook, MediaWiki, LiveJournal...

Existing caching techniques are less useful

whole-page caches: foiled by personalization

database caches: more processing is being done               
                           in the application layer
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e.g. memcached,
       Java object caches

very lightweight
in-memory caches

stores application objects 
(computations), 
i.e.:
      not a database replica
      not a query cache

Application-Level Caching

Application

DatabaseCache
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Why Cache Application Data?

Cache higher-level data closer to app needs:
   DB queries, complex structures, HTML fragments

Can separate common and customized content

Reduces database load
Reduces application server load
• this matters too (application servers aren’t cheap!)
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Existing Caches Add To 
Application Complexity

No transactional consistency

• violates guarantees of the underlying DB

• app. code must deal with transient anomalies

Hash table interface leaves apps responsible for:

• naming and retrieving cache entries

• keeping cache up-to-date (invalidations)
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Harder Than You Think!

Naming: cache key must uniquely identify value

• MediaWiki stored list of recent changes with 
same key regardless of # days requested (#7541)

Invalidations: require reasoning globally about 
entire application

• After editing wiki page, what to invalidate?

Tuesday, October 5, 2010



Harder Than You Think!

Naming: cache key must uniquely identify value

• MediaWiki stored list of recent changes with 
same key regardless of # days requested (#7541)

Invalidations: require reasoning globally about 
entire application

• After editing wiki page, what to invalidate?

• Forgot editor’s User object – contains edit count 
(#8391)
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Introducing TxCache

Our cache provides:

• transactional consistency: serializable, point-in-
time view of data, whether from cache or DB

• bounded staleness: improves hit rate for 
applications that accept old (but consistent) data

• simpler interface: 
applications mark functions cacheable; 
TxCache caches their results,
including naming and invalidations
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Application

Database

TxCache Library

Cache

• TxCache library hides 
complexity of cache 
management

• Integrates with new 
cache server, minor 
DB modifications 
(Postgres; <2K lines 
changed) 

• Together, ensure 
whole-system 
transactional 
consistency
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• beginRO(staleness),   commit(),
beginRW(),                abort()

• make-cacheable(fn)
where fn is a side-effect-free function that depends 
only on its arguments and the database state
     ➔  fn returns cached result of previous call
          with same inputs if still consistent w/ DB

TxCache Interface
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• beginRO(staleness),   commit(),
beginRW(),                abort()

• make-cacheable(fn)
where fn is a side-effect-free function that depends 
only on its arguments and the database state
     ➔  fn returns cached result of previous call
          with same inputs if still consistent w/ DB

TxCache Interface

That’s it.
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• beginRO(staleness),   commit(),
beginRW(),                abort()

• make-cacheable(fn)
where fn is a side-effect-free function that depends 
only on its arguments and the database state
     ➔  fn returns cached result of previous call
          with same inputs if still consistent w/ DB

TxCache Interface

That’s it.
Really!
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TxCache Library

Application
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Outline

1. Application-Level Caching

2. TxCache Interface

3. Ensuring Transactional Consistency

4. Automating Invalidations

5. Evaluation
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Consistency Approach
Goal: all data seen in a transaction reflects 
single point-in-time snapshot

• Assign timestamp to transaction

• Know the validity interval of each object
in cache or database:
     set of timestamps when it was valid

• Then: transaction can read data if data’s 
validity interval contains txn’s timestamp
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A Versioned Cache
Cache entries tagged with validity intervals

• each entry one immutable version of an object

• allows lookup for value valid at certain time

K1

K2

time

K3

K4
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Staleness
Assign transaction an earlier timestamp

• if consistent with application requirements

• allows cached data to be used longer
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time
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Requires starting a DB transaction at same timestamp

• internally, snapshot isolation supports this

• added interface to expose this to cache library

Staleness
Assign transaction an earlier timestamp

• if consistent with application requirements

• allows cached data to be used longer
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Where Do Validity 
Intervals Come From?
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Where Do Validity 
Intervals Come From?

Validity of an application object
= validity of the DB queries used to generate it
• library tracks query dependencies
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Where Do Validity 
Intervals Come From?

Validity of an application object
= validity of the DB queries used to generate it
• library tracks query dependencies

Validity of a DB query
= validity of the tuples accessed to compute it
• we modify the DB to report this

Validity of a tuple
= timestamps of creating, deleting transactions
• multiversion DBs already track this
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Computing Query Validity
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Computing Query Validity

inserted by 
txn #41
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Computing Query Validity

inserted by 
txn #41

deleted by 
txn #50
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Computing Query Validity

SELECT * FROM ...;
x

y
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Computing Query Validity

SELECT * FROM ...;
  result = {x, y}
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Computing Query Validity
Intersect validity intervals of tuples accessed

SELECT * FROM ...;
  result = {x, y}
  VALIDITY [41, 48)
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Lazy Timestamp Selection
Hard to choose timestamp a priori

• Don’t know access pattern or cache contents

• Insight: don’t have to choose right away!
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Invalidations
What about objects that are still valid?

• don’t know their upper validity bound yet!

• represent as open-ended validity intervals

Later, database notifies cache if object changes;
cache truncates interval

K1

K2

time
now
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Invalidation Tags

How to identify which objects changed?
• DB doesn’t know which app-level objects are cached

Objects in cache have invalidation tags

• Modified DB to assign invalidation tags to each query

• DB generates list of tags affected by each update

• Cache finds affected objects and updates interval
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Invalidation Tags

Inval. tags come from query’s access methods

• TABLE:KEY=VALUE for queries that use index lookups

• TABLE:* for non-indexed queries (rare)

SELECT * FROM users WHERE name = ‘floyd’;

   [result]

   INVALIDATION TAGS users:name=floyd
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Invalidation Stream

On each update, DB generates affected tags:

• for each tuple affected, one tag per index key

Broadcasts to all cache nodes

• ordered stream, with transaction timestamps

Cache lookups treat unbounded intervals as 
bounded at last timestamp received

• avoids invalidate & lookup race conditions
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Evaluation

• How much benefit from adding caching?

• Does using stale data help?

• Does consistency hurt performance?
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RUBiS Benchmarks
RUBiS: simulated eBay-like auction site

• standard browsing & bidding workload; 85% read-only

• two datasets: 850 MB (in-memory), 6 GB (disk-bound)

All servers 2x 3.20 GHz Xeon, 2 GB RAM

• 1 DB server (modified Postgres 8.2.11)

• 9 frontend/cache servers (Apache 2 / PHP 5)
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Cache Performance
(in-memory DB; 2 cache nodes)
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Cache Performance
(disk-bound DB; 8 shared web/cache nodes)
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Even A Little Staleness Helps
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Costs of Consistency
Cache misses classified as:
• compulsory: data never seen
• staleness: data invalidated & too old to use
• capacity: data was evicted
• consistency: data available but inconsistent w/ prior reads

consistency misses
configuration (% of total misses)

in-memory, 512 MB, 30 s stale 7.8%

in-memory, 512 MB, 15 s stale 5.4%

in-memory, 64 MB, 30 s stale 0.2%

disk-bound, 9 GB, 30 s stale 0.7%
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Costs of Consistency
Cache misses classified as:
• compulsory: data never seen
• staleness: data invalidated & too old to use
• capacity: data was evicted
• consistency: data available but inconsistent w/ prior reads

consistency misses
configuration (% of total misses)

in-memory, 512 MB, 30 s stale 7.8%

in-memory, 512 MB, 15 s stale 5.4%

in-memory, 64 MB, 30 s stale 0.2%

disk-bound, 9 GB, 30 s stale 0.7%

common to
other caches}
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Costs of Consistency
Verified experimentally by disabling consistency:
transaction can read any data valid in last 30 sec
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Related Work

Application-level caches:
• more flexible than whole-page caches: partial results

• require explicit management by application

• no transactional support (e.g. memcached)
or transactions only within cache (e.g. JBoss, AppFabric)

Database replication:
• FAS, Ganymed: keep stale replicas with batched updates

• can’t apply methods to app-level caching

Tuesday, October 5, 2010



Conclusion
TxCache: application-layer caching with a simpler 
programming model

• provides transactional consistency across both cache 
and database

• automatic management: applications not responsible for 
lookups, updates, invalidations

New mechanisms:

• consistency ensured by tracking object validity intervals

• automatic database-generated invalidations

Consistency imposes little performance cost
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