
Transactional Consistency
and Automatic Management

 in an Application Data Cache

Dan Ports
Austin Clements Irene Zhang

Samuel Madden Barbara Liskov

MIT CSAIL

Tuesday, October 5, 2010

Modern web applications face
immense scaling challenges

increasingly complex, personalized content

e.g. Facebook, MediaWiki, LiveJournal...

Existing caching techniques are less useful

whole-page caches: foiled by personalization

database caches: more processing is being done
 in the application layer

Tuesday, October 5, 2010

Application-Level Caching

Application

DatabaseCache

Tuesday, October 5, 2010

e.g. memcached,
 Java object caches

Application-Level Caching

Application

DatabaseCache

Tuesday, October 5, 2010

e.g. memcached,
 Java object caches

very lightweight
in-memory caches

stores application objects
(computations),
i.e.:
 not a database replica
 not a query cache

Application-Level Caching

Application

DatabaseCache

Tuesday, October 5, 2010

Why Cache Application Data?

Cache higher-level data closer to app needs:
 DB queries, complex structures, HTML fragments

Can separate common and customized content

Reduces database load
Reduces application server load
• this matters too (application servers aren’t cheap!)

Tuesday, October 5, 2010

Existing Caches Add To
Application Complexity

No transactional consistency

• violates guarantees of the underlying DB

• app. code must deal with transient anomalies

Hash table interface leaves apps responsible for:

• naming and retrieving cache entries

• keeping cache up-to-date (invalidations)

Tuesday, October 5, 2010

Harder Than You Think!

Naming: cache key must uniquely identify value

• MediaWiki stored list of recent changes with
same key regardless of # days requested (#7541)

Invalidations: require reasoning globally about
entire application

• After editing wiki page, what to invalidate?

Tuesday, October 5, 2010

Harder Than You Think!

Naming: cache key must uniquely identify value

• MediaWiki stored list of recent changes with
same key regardless of # days requested (#7541)

Invalidations: require reasoning globally about
entire application

• After editing wiki page, what to invalidate?

• Forgot editor’s User object – contains edit count
(#8391)

Tuesday, October 5, 2010

Introducing TxCache

Our cache provides:

• transactional consistency: serializable, point-in-
time view of data, whether from cache or DB

• bounded staleness: improves hit rate for
applications that accept old (but consistent) data

• simpler interface:
applications mark functions cacheable;
TxCache caches their results,
including naming and invalidations

Tuesday, October 5, 2010

Application

Database

TxCache Library

Cache

• TxCache library hides
complexity of cache
management

• Integrates with new
cache server, minor
DB modifications
(Postgres; <2K lines
changed)

• Together, ensure
whole-system
transactional
consistency

Tuesday, October 5, 2010

• beginRO(staleness), commit(),
beginRW(), abort()

• make-cacheable(fn)
where fn is a side-effect-free function that depends
only on its arguments and the database state
 ➔ fn returns cached result of previous call
 with same inputs if still consistent w/ DB

TxCache Interface

Tuesday, October 5, 2010

• beginRO(staleness), commit(),
beginRW(), abort()

• make-cacheable(fn)
where fn is a side-effect-free function that depends
only on its arguments and the database state
 ➔ fn returns cached result of previous call
 with same inputs if still consistent w/ DB

TxCache Interface

That’s it.

Tuesday, October 5, 2010

• beginRO(staleness), commit(),
beginRW(), abort()

• make-cacheable(fn)
where fn is a side-effect-free function that depends
only on its arguments and the database state
 ➔ fn returns cached result of previous call
 with same inputs if still consistent w/ DB

TxCache Interface

That’s it.
Really!

Tuesday, October 5, 2010

TxCache Library

Application

Tuesday, October 5, 2010

CALL

TxCache Library

Application

Tuesday, October 5, 2010

LOOKUP

CALL

TxCache Library

Application

Tuesday, October 5, 2010

 HIT

LOOKUP

CALL

TxCache Library

Application

Tuesday, October 5, 2010

 MISS

LOOKUP

CALL

TxCache Library

Application

Tuesday, October 5, 2010

 MISS

LOOKUP

UPCALLCALL

TxCache Library

Application

Tuesday, October 5, 2010

 MISS

LOOKUP

UPCALLCALL

TxCache Library

QUERIES

Application

Tuesday, October 5, 2010

 MISS

LOOKUP

UPCALLCALL

INSERT

TxCache Library

QUERIES

Application

Tuesday, October 5, 2010

 MISS

LOOKUP

UPCALLCALL

INSERT

TxCache Library

QUERIES

Application

Tuesday, October 5, 2010

Outline

1. Application-Level Caching

2. TxCache Interface

3. Ensuring Transactional Consistency

4. Automating Invalidations

5. Evaluation

Tuesday, October 5, 2010

Consistency Approach
Goal: all data seen in a transaction reflects
single point-in-time snapshot

• Assign timestamp to transaction

• Know the validity interval of each object
in cache or database:
 set of timestamps when it was valid

• Then: transaction can read data if data’s
validity interval contains txn’s timestamp

Tuesday, October 5, 2010

A Versioned Cache
Cache entries tagged with validity intervals

• each entry one immutable version of an object

• allows lookup for value valid at certain time

K1

K2

time

K3

K4

Tuesday, October 5, 2010

A Versioned Cache
Cache entries tagged with validity intervals

• each entry one immutable version of an object

• allows lookup for value valid at certain time

K1

K2

time

K3

K4

Tuesday, October 5, 2010

Staleness
Assign transaction an earlier timestamp

• if consistent with application requirements

• allows cached data to be used longer

K1

K2

time

K3

K4

Tuesday, October 5, 2010

Staleness
Assign transaction an earlier timestamp

• if consistent with application requirements

• allows cached data to be used longer

K1

K2

time

K3

K4

Tuesday, October 5, 2010

Staleness
Assign transaction an earlier timestamp

• if consistent with application requirements

• allows cached data to be used longer

K1

K2

time

K3

K4

Tuesday, October 5, 2010

Requires starting a DB transaction at same timestamp

• internally, snapshot isolation supports this

• added interface to expose this to cache library

Staleness
Assign transaction an earlier timestamp

• if consistent with application requirements

• allows cached data to be used longer

Tuesday, October 5, 2010

Where Do Validity
Intervals Come From?

Tuesday, October 5, 2010

Where Do Validity
Intervals Come From?

Validity of an application object
= validity of the DB queries used to generate it
• library tracks query dependencies

Tuesday, October 5, 2010

Where Do Validity
Intervals Come From?

Validity of an application object
= validity of the DB queries used to generate it
• library tracks query dependencies

Validity of a DB query
= validity of the tuples accessed to compute it
• we modify the DB to report this

Tuesday, October 5, 2010

Where Do Validity
Intervals Come From?

Validity of an application object
= validity of the DB queries used to generate it
• library tracks query dependencies

Validity of a DB query
= validity of the tuples accessed to compute it
• we modify the DB to report this

Validity of a tuple
= timestamps of creating, deleting transactions
• multiversion DBs already track this

Tuesday, October 5, 2010

Computing Query Validity

x

y

time

z

q

40 45 50

Tuesday, October 5, 2010

Computing Query Validity

inserted by
txn #41

x

y

time

z

q

40 45 50

Tuesday, October 5, 2010

Computing Query Validity

inserted by
txn #41

deleted by
txn #50

x

y

time

z

q

40 45 50

Tuesday, October 5, 2010

Computing Query Validity

SELECT * FROM ...;
x

y

time

z

q

40 45 50

Tuesday, October 5, 2010

Computing Query Validity

SELECT * FROM ...;
 result = {x, y}

x

y

time

z

q

40 45 50

Tuesday, October 5, 2010

Computing Query Validity
Intersect validity intervals of tuples accessed

SELECT * FROM ...;
 result = {x, y}
 VALIDITY [41, 48)

x

y

time

z

q

40 45 50

Tuesday, October 5, 2010

Computing Query Validity
Intersect validity intervals of tuples accessed

SELECT * FROM ...;
 result = {x, y}
 VALIDITY [41, 48)

x

y

time

z

q

40 45 50

Tuesday, October 5, 2010

Lazy Timestamp Selection
Hard to choose timestamp a priori

• Don’t know access pattern or cache contents

• Insight: don’t have to choose right away!

K1

K2

time

K3

K4

Tuesday, October 5, 2010

Lazy Timestamp Selection
Hard to choose timestamp a priori

• Don’t know access pattern or cache contents

• Insight: don’t have to choose right away!

K1

K2

time

K3

K4

Tuesday, October 5, 2010

Lazy Timestamp Selection
Hard to choose timestamp a priori

• Don’t know access pattern or cache contents

• Insight: don’t have to choose right away!

K1

K2

time

K3

K4

Tuesday, October 5, 2010

Lazy Timestamp Selection
Hard to choose timestamp a priori

• Don’t know access pattern or cache contents

• Insight: don’t have to choose right away!

K1

K2

time

K3

K4

Tuesday, October 5, 2010

Outline

1. Application-Level Caching

2. TxCache Interface

3. Ensuring Transactional Consistency

4. Automating Invalidations

5. Evaluation

Tuesday, October 5, 2010

Invalidations
What about objects that are still valid?

• don’t know their upper validity bound yet!

• represent as open-ended validity intervals

Later, database notifies cache if object changes;
cache truncates interval

K1

K2

time
now

Tuesday, October 5, 2010

Invalidation Tags

How to identify which objects changed?
• DB doesn’t know which app-level objects are cached

Objects in cache have invalidation tags

• Modified DB to assign invalidation tags to each query

• DB generates list of tags affected by each update

• Cache finds affected objects and updates interval

Tuesday, October 5, 2010

Invalidation Tags

Inval. tags come from query’s access methods

• TABLE:KEY=VALUE for queries that use index lookups

• TABLE:* for non-indexed queries (rare)

SELECT * FROM users WHERE name = ‘floyd’;

 [result]

 INVALIDATION TAGS users:name=floyd

Tuesday, October 5, 2010

Invalidation Stream

On each update, DB generates affected tags:

• for each tuple affected, one tag per index key

Broadcasts to all cache nodes

• ordered stream, with transaction timestamps

Cache lookups treat unbounded intervals as
bounded at last timestamp received

• avoids invalidate & lookup race conditions

Tuesday, October 5, 2010

Outline

1. Application-Level Caching

2. TxCache Interface

3. Ensuring Transactional Consistency

4. Automating Invalidations

5. Evaluation

Tuesday, October 5, 2010

Evaluation

• How much benefit from adding caching?

• Does using stale data help?

• Does consistency hurt performance?

Tuesday, October 5, 2010

RUBiS Benchmarks
RUBiS: simulated eBay-like auction site

• standard browsing & bidding workload; 85% read-only

• two datasets: 850 MB (in-memory), 6 GB (disk-bound)

All servers 2x 3.20 GHz Xeon, 2 GB RAM

• 1 DB server (modified Postgres 8.2.11)

• 9 frontend/cache servers (Apache 2 / PHP 5)

Tuesday, October 5, 2010

Cache Performance
(in-memory DB; 2 cache nodes)

 0

 1000

 2000

 3000

 4000

 5000

0%

20%

40%

60%

80%

100%

64MB 256MB 512MB 768MB 1024MB

Cache size

Max throughput
(requests/sec)

Cache
hit rate

Tuesday, October 5, 2010

Cache Performance
(disk-bound DB; 8 shared web/cache nodes)

Max throughput
(requests/sec)

Cache
hit rate

 0

 100

 200

 300

 400

 500

 600

80%

85%

90%

95%

100%

1GB 2GB 3GB 4GB 5GB 6GB 7GB 8GB 9GB

Cache size

Tuesday, October 5, 2010

Even A Little Staleness Helps

0x

1x

2x

3x

4x

5x

6x

 0 20 40 60 80 100 120

R
e

la
tiv

e
 t

h
ro

u
g

h
p

u
t

Staleness limit in seconds

no caching (baseline)

TxCache
(in-memory DB)

TxCache
(disk-bound DB)

Tuesday, October 5, 2010

Costs of Consistency
Cache misses classified as:
• compulsory: data never seen
• staleness: data invalidated & too old to use
• capacity: data was evicted
• consistency: data available but inconsistent w/ prior reads

consistency misses
configuration (% of total misses)

in-memory, 512 MB, 30 s stale 7.8%

in-memory, 512 MB, 15 s stale 5.4%

in-memory, 64 MB, 30 s stale 0.2%

disk-bound, 9 GB, 30 s stale 0.7%

Tuesday, October 5, 2010

Costs of Consistency
Cache misses classified as:
• compulsory: data never seen
• staleness: data invalidated & too old to use
• capacity: data was evicted
• consistency: data available but inconsistent w/ prior reads

consistency misses
configuration (% of total misses)

in-memory, 512 MB, 30 s stale 7.8%

in-memory, 512 MB, 15 s stale 5.4%

in-memory, 64 MB, 30 s stale 0.2%

disk-bound, 9 GB, 30 s stale 0.7%

common to
other caches}

Tuesday, October 5, 2010

Costs of Consistency
Verified experimentally by disabling consistency:
transaction can read any data valid in last 30 sec

 0

 1000

 2000

 3000

 4000

 5000

64MB 256MB 512MB 768MB 1024MB

P
e
a
k
 r

e
q

u
e
s
ts

/s
e
c

Cache size

no caching

TxCache

no consistency

Tuesday, October 5, 2010

Related Work

Application-level caches:
• more flexible than whole-page caches: partial results

• require explicit management by application

• no transactional support (e.g. memcached)
or transactions only within cache (e.g. JBoss, AppFabric)

Database replication:
• FAS, Ganymed: keep stale replicas with batched updates

• can’t apply methods to app-level caching

Tuesday, October 5, 2010

Conclusion
TxCache: application-layer caching with a simpler
programming model

• provides transactional consistency across both cache
and database

• automatic management: applications not responsible for
lookups, updates, invalidations

New mechanisms:

• consistency ensured by tracking object validity intervals

• automatic database-generated invalidations

Consistency imposes little performance cost

Tuesday, October 5, 2010

