Transactional Consistency
and Automatic Management
in an Application Data Cache

Dan
Austin Clemen

Samuel Madden

Portis

s Irene Zhang

Barbara Liskov

MIT CSAIL

Modern web applications face
immense scaling challenges
increasingly complex, personalized content

e.g. Facebook, MediaWiki, LiveJournal...

Existing caching techniques are less useful

whole-page caches: foiled by personalization

database caches: more processing is being done
in the application layer

Tuesday, October 5, 2010

Application-Level Caching

Database

>

Application-Level Caching

Database

e.g. memcached,
Java object caches ©

Application-Level Caching

Cache Database

e.g. memcached, 27 AN

Java object caches i ~
very lightweight z -

in-memory caches

stores application objects
(computations),
le.:
not a database replica
not a query cache

Tuesday, October 5, 2010

Why Cache Application Data?

Cache higher-level data closer to app needs:
DB queries, complex structures, HTML fragments

Can separate common and customized content

Reduces database load
Reduces application server load

e this matters too (application servers aren’t cheap!)

Tuesday, October 5, 2010

Existing Caches Add To
Application Complexity

No transactional consistency
® violates guarantees of the underlying DB

® app. code must deal with transient anomalies

Hash table interface leaves apps responsible for:
® naming and retrieving cache entries

® keeping cache up-to-date (invalidations)

Harder Than You Think!

Naming:

cache key must uniquely identify value

e MediaWiki stored list of recent changes with

same

Invalidati

entire ap

key regardless of # days requested (#7541)

ons: require reasoning globally about

nlication

o After editing wiki page, what to invalidate?

Tuesday, October 5, 2010

Harder Than You Think!

Naming: cache key must uniquely identity value

e MediaWiki stored list of recent changes with
same key regardless of # days requested (#7541)

Invalidations: require reasoning globally about
entire application

o After editing wiki page, what to invalidate?

e Forgot editor’s User object — contains edit count
(#8391)

Tuesday, October 5, 2010

Introducing TxCache

Our cache provides:

¢ transactional consistency: serializable, point-in-
time view of data, whether from cache or DB

¢ bounded staleness: improves hit rate for
applications that accept old (but consistent) data

¢ simpler interface:
applications mark functions cacheable;
TxCache caches their results,
including naming and invalidations

Tuesday, October 5, 2010

Cache

—

Database

)

e TxCache library hides
complexity of cache
management

® |ntegrates with new
cache server, minor
DB modifications
(Postgres; <2K lines
changed)

® Together, ensure
whole-system
transactional
consistency

Tuesday, October 5, 2010

TxCache Interface

® beginRO(staleness), commit(),
peginRW(), abort()

® make-cacheable(fn)
where fn is a side-effect-free function that depends
only on its arguments and the database state
=> fn returns cached result of previous call
with same inputs if still consistent w/ DB

Tuesday, October 5, 2010

TxCache Interface

® beginRO(staleness), commit(),
peginRW(), abort()

® make-cacheable(fn)
where fn is a side-effect-free function that depends
only on its arguments and the database state
=> fn returns cached result of previous call
with same inputs if still consistent w/ DB

That’s it.

Tuesday, October 5, 2010

TxCache Interface

® beginRO(staleness), commit(),
peginRW(), abort()

® make-cacheable(fn)
where fn is a side-effect-free function that depends
only on its arguments and the database state
=> fn returns cached result of previous call
with same inputs if still consistent w/ DB

That’s it.
Really!

Tuesday, October 5, 2010

Tuesday, October 5, 2010

Tuesday, October 5, 2010

UPCALL

Tuesday, October 5, 2010

i’
[

LOOKUP

Qlﬁs

UPCALL

Tuesday, October 5, 2010

i’

L

LOOKUP

NSERT QUERIES

» UPCALL

Tuesday, October 5, 2010

UPCALL

Tuesday, October 5, 2010

Outline

1. Application-Level Caching

2. TxCache Interface

3. Ensuring Transactional Consistency
4. Automating Invalidations

5. Evaluation

Tuesday, October 5, 2010

Consistency Approach

Goal: all data seen in a transaction reflects
single point-in-time snapshot

® Assign timestamp to transaction

e Know the validity interval of each object
in cache or database:
set of timestamps when it was valid

e Then: transaction can read data if data’s
validity interval contains txn’s timestamp

Tuesday, October 5, 2010

A Versioned Cache

Cache entries tagged with validity intervals

® each entry one immutable version of an object

® allows lookup for value valid at certain time

— 4)

/

1

/ Uk > time/

Tuesday, October 5, 2010

A Versioned Cache

Cache entries tagged with validity intervals

® each entry one immutable version of an object

® allows lookup for value valid at certain time

— 4)

/

1

Y Uk _ time/

Tuesday, October 5, 2010

Staleness

Assign transaction an earlier timestamp

e if consistent with application requirements

¢ allows cached data to be used longer

tlmej

Tuesday, October 5, 2010

Staleness

Assign transaction an earlier timestamp
e if consistent with application requirements

¢ allows cached data to be used longer

Tuesday, October 5, 2010

Staleness

Assign transaction an earlier timestamp
e if consistent with application requirements

¢ allows cached data to be used longer

Tuesday, October 5, 2010

Staleness

Assign transaction an earlier timestamp
e if consistent with application requirements

¢ allows cached data to be used longer

Requires starting a DB transaction at same timestamp

¢ internally, snapshot isolation supports this

® added interface to expose this to cache library

Tuesday, October 5, 2010

Where Do Validity
Intervals Come From?

Where Do Validity
Intervals Come From?

Validity of an application object
= validity of the DB queries used to generate it

e library tracks query dependencies

Where Do Validity
Intervals Come From?

Validity of an application object
= validity of the DB queries used to generate it

e library tracks query dependencies

Validity of a DB query

= validity of the tuples accessed to compute it
¢ we modify the DB to report this

Tuesday, October 5, 2010

Where Do Validity
Intervals Come From?

Validity of an application object
= validity of the DB queries used to generate it

e library tracks query dependencies

Validity of a DB query

= validity of the tuples accessed to compute it
¢ we modify the DB to report this

Validity of a tuple

= timestamps of creating, deleting transactions
e multiversion DBs already track this

Tuesday, October 5, 2010

Computing Query Validity

Computing Query Validity

~
inserted by

txn #41
_ J

Computing Query Validity

4 p 4 p
inserted by deleted by

txn #41 txn #50
_ J _ J

V V

Computing Query Validity

SELECT * FROM ...;

Computing Query Validity

[SELECT * FROM .
result = {x, vy}

®
..,

Computing Query Validity

Intersect validity intervals of tuples accessed

X S .

| SELECT * FROM ...;
Y Bl result = {x, v}
7 VALIDITY [41, 48)
q
<+

Tuesday, October 5, 2010

Computing Query Validity

Intersect validity intervals of tuples accessed

X S .

(SELECT * FROM ...
Y Bl result = {x, v}
7 VALIDITY [41, 48)
q
<+

we

Tuesday, October 5, 2010

Lazy Timestamp Selection

Hard to choose timestamp a priori

® Don’t know access pattern or cache contents

® Insight: don’t have to choose right away!

1 I—

K2 — L

K3 —_] |
Uk > time/

Tuesday, October 5, 2010

Lazy Timestamp Selection

Hard to choose timestamp a priori

e Don’t know access pattern or cache contents

® Insight: don’t have to choose right away!

— \ . " N
1
Ky
Ks
= | = K,
—1
_ < tlmej

Tuesday, October 5, 2010

Lazy Timestamp Selection

Hard to choose timestamp a priori

® Don’t know access pattern or cache contents

® Insight: don’t have to choose right away!

— 4)
K, —— E—

< I B > time,

Tuesday, October 5, 2010

Lazy Timestamp Selection

Hard to choose timestamp a priori

® Don’t know access pattern or cache contents

® Insight: don’t have to choose right away!

— 4 K)
1 q_
K2 —
K. — -
3 — —
_ < — > tlmej

Tuesday, October 5, 2010

Outline

1. Application-Level Caching

2. TxCache Interface

3. Ensuring Transactional Consistency
4. Automating Invalidations

5. Evaluation

Tuesday, October 5, 2010

Invalidations

What about objects that are still valid?
® don’t know their upper validity bound yet!

® represent as open-ended validity intervals

<+—t—++t++++++++++—> time
now

L ater, database notifies cache if object changes;
cache truncates interval

Tuesday, October 5, 2010

Invalidation Tags

How to identity which objects changed?

® DB doesn’t know which app-level objects are cached

Objects in cache have invalidation tags

¢ Modified DB to assign invalidation tags to each query
® DB generates list of tags affected by each update

e Cache finds affected objects and updates interval

Tuesday, October 5, 2010

Invalidation Tags

Inval. tags come from query’s access methods

® TABLE:KEY=VALUE for queries that use index lookups

e TABLE:* for non-indexed queries (rare)

r

SELECT * FROM users WHERE name = ‘floyd’;
[result]

INVALIDATION TAGS users:name=floyd

~N

Tuesday, October 5, 2010

Invalidation Stream

On each update, DB generates affected tags:

® for each tuple affected, one tag per index key

Broadcasts to all cache nodes

® ordered stream, with transaction timestamps

Cache lookups treat unbounded intervals as
bounded at last timestamp received

® avoids invalidate & lookup race conditions

Tuesday, October 5, 2010

Outline

1. Application-Level Caching

2. TxCache Interface

3. Ensuring Transactional Consistency
4. Automating Invalidations

5. Evaluation

Tuesday, October 5, 2010

Fvaluation

® How much benefit from adding caching?
® Does using stale data help?

® Does consistency hurt performance?

RUBIS Benchmarks

RUBIS: simulated eBay-like auction site

e standard browsing & bidding workload; 85% read-only
e two datasets: 850 MB (in-memory), 6 GB (disk-bound)

All servers 2x 3.20 GHz Xeon, 2 GB RAM
® 1 DB server (modified Postgres 8.2.11)
® 9 frontend/cache servers (Apache 2 / PHP 5)

Tuesday, October 5, 2010

Cache Performance

(in-memory DB; 2 cache nodes)

Max throughput
(requests/sec)

Cache
hit rate

5000
4000
3000
2000
1000

0
100%
80%
60%
40%
20%
0%

FEE T

64MB 256MB 512MB 768MB 1024MB

Cache size

Tuesday, October 5, 2010

Cache Performance
(disk-bound DB; 8 shared web/cache nodes)

Max throughput
(requests/sec)

Cache
hit rate

100%

600

200
400
300
200
100 -

0

95%

90% /

85% r
80%

1GB 2G

B 3GB 4GB 5GB 6GB 7GB 8GB 9GB
Cache size

Tuesday, October 5, 2010

Even A Little Staleness Helps

o TxCache
. Bx o - (in-memory DB)
-
Q
S 4y I TxCache
= (disk-bound DB)
£ 3X i
©
=
S 2X i
o
1X -- - no Caching (baseline)

-
>

60 80 100 120
Staleness limit in seconds

Tuesday, October 5, 2010

Costs of Consistency

Cache misses classified as:

® compulsory: data never seen

® staleness: data invalidated & too old to use

® capacity: data was evicted

® consistency: data available but inconsistent w/ prior reads

consistency misses
configuration (% of total misses)

in-memory, 512 MB, 30 s stale 7 .8%
In-memory, 512 MB, 15 s stale 5.4%
In-memory, 64 MB, 30 s stale 0.2%
disk-bound, 9 GB, 30 s stale 0.7%

Tuesday, October 5, 2010

Costs of Consistency

Cache misses classified as:

compulsory: data never seen
staleness: data invalidated & too old to use
capacity: data was evicted

[
common to

[

. other caches

® consistency: data available but inconsistent w/ prior reads

consistency misses
configuration (% of total misses)

in-memory, 512 MB, 30 s stale 7 .8%
In-memory, 512 MB, 15 s stale 5.4%
In-memory, 64 MB, 30 s stale 0.2%
disk-bound, 9 GB, 30 s stale 0.7%

Tuesday, October 5, 2010

Costs of Consistency

Verified experimentally by disabling consistency:
transaction can read any data valid in last 30 sec

Peak requests/sec

5000 -
4000 |

3000 | ;

2000

1000

0

T T :
... j
IIIIIII
|||||||||
~\

|

64MB 256MB 512MB 768MB 1024MB

Cache size

no consistency

TxCache

000000000

no caching

Tuesday, October 5, 2010

Related Work

Application-level caches:

¢ more flexible than whole-page caches: partial results

e require explicit management by application

® no transactional support (e.g. memcached)
or transactions only within cache (e.g. JBoss, AppFabric)

Database replication:
e FAS, Ganymed: keep stale replicas with batched updates

e can’t apply methods to app-level caching

Tuesday, October 5, 2010

Conclusion

TxCache: application-layer caching with a simpler
programming model

® provides transactional consistency across both cache
and database

® automatic management: applications not responsible for
lookups, updates, invalidations

New mechanisms:
e consistency ensured by tracking object validity intervals

e automatic database-generated invalidations

Consistency imposes little performance cost

Tuesday, October 5, 2010

