
Transactional Caching of Application Data using Recent Snapshots
Dan R. K. Ports∗ Austin T. Clements† Irene Zhang† Samuel Madden Barbara Liskov

MIT CSAIL

1 Overview
Many of today’s well-known websites use application data caches
to reduce the bottleneck load on the database, as well as the com-
putational load on the application servers. Distributed in-memory
shared caches, exemplified by memcached, are one popular ap-
proach. These caches typically provide a get/put interface, akin
to a distributed hash table; the application chooses what data to
keep in the cache and keeps it up to date. By storing the cache
entirely in memory and horizontally partitioning among nodes, in-
memory caches provide quick response times and ease of scaling.

However, existing caches have no notion of transactional con-
sistency: there is no way to ensure that two accesses to the cache
reflect a view of the database at the same point in time. While the
backing database goes to great lengths to ensure this property (se-
rializable isolation), the caching layer violates these guarantees.
The resulting inconsistencies can have unpleasant consequences
if exposed to the user (e.g., attributing the latest bid to the wrong
user on an auction site), or add complexity to application code
by forcing it to cope with temporarily violated invariants.

We argue that transactional semantics are not incompatible
with cache performance and scalability. We introduce a
transactional cache, TxCache, which guarantees that all values
retrieved from the cache or database during a transaction reflect
a consistent snapshot of the database.

TxCache also strives to simplify application design by helping
manage the cache. Instead of requiring applications to manually
insert and check for values in the cache, TxCache provides a
library with which programmers simply designate functions as
cacheable, and the library checks the cache for previous calls
with the same arguments. In particular, and unlike memcached,
TxCache does not require applications to explicitly invalidate
cached values; correctly identifying the values to invalidate is dif-
ficult because it requires global reasoning about the application.

2 Running Transactions in the Past
TxCache provides a different consistency guarantee than most
caches. Typical caches strive to guarantee freshness: the cache
always reflects the latest state of what it is caching. TxCache re-
laxes its freshness guarantee slightly to provide transactional con-
sistency: within a transaction block, the application sees a view
consistent with the state of the database at a particular timestamp.

Providing both freshness and consistency requires conflicting
transactions to block or abort, which is impractical in a high-
throughput system. Snapshot isolation ensures that a transaction
sees a consistent snapshot of the database taken when the
transaction begins. TxCache takes this approach further, allowing
read-only transactions to be run on a slightly earlier snapshot (up
to a user-specified limit). In addition to avoiding conflicts, this
increases the hit rate by allowing the use of slightly stale data.

Using stale but consistent cached data is safe because of the
inherent asynchrony in distributed systems. Even without a cache,
query results are already not guaranteed to be fresh unless leases
or locks are used, because concurrent updates might make them
stale while in flight. Applications can use read/write transactions
when freshness is required. TxCache does not use cached data
for read/write transactions, so it introduces no new anomalies.
∗student; will present † student

Cache Database

Application

TxCache Library

Data center
clients

Figure 1: Anatomy of a TxCache deployment.

3 TxCache Design
TxCache is designed for systems where several application
servers (e.g., web servers) interact with a database server.
TxCache introduces two new components, shown in Figure 1:
a cache and an application-side cache interface library. It also
requires minor modifications to the database server.

Cache servers. TxCache stores data in RAM using a simple
key-value distributed hash table to partition data across many
cache server nodes. Applications do not access the DHT directly:
TxCache’s application-side library assigns keys to, retrieves, and
updates cached values as cacheable functions are called.

Cached data is versioned. In addition to its key, each entry
in the cache is tagged with its validity interval, the range of time
at which the cached value was current. It is bounded below by
the commit time of the transaction that made it valid, and above
by that of the first subsequent transaction to change the result.

Database server. TxCache uses a standard relational database
with a few modifications. Specifically, it requires the ability to
run queries on slightly stale snapshots, and to generate validity in-
tervals for each query result returned. These validity intervals are
used to tag the cache entries. We leverage existing concurrency
control mechanisms to add the necessary support to an existing
DBMS, PostgreSQL, with minimal modifications (under 1,000
lines of code changed) and no observable performance impact.

Library. Applications interact with TxCache through its
application-side library. The library assigns a timestamp to
the transaction and retrieves from the cache only data valid at
that timestamp; the timestamp is assigned lazily based on what
data is available in the cache. The library provides language
bindings that wrap a cacheable function; when called, it checks
for available cached values. If none are available, it invokes the
function’s implementation, collects the validity intervals from
any database queries it makes, and stores the result in the cache.

4 Results
Preliminary results using the RUBiS auction website benchmark
are encouraging. Even restricting stale data to at most 30 seconds
old, TxCache is able to increase peak throughput by a factor of
over 2.5× without sacrificing transactional consistency.


