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ABSTRACT
Causal inference from observational data is a subject of ac-
tive research and development in statistics and computer
science. Many statistical software packages have been devel-
oped for this purpose. However, these toolkits do not scale
to large datasets. We propose and demonstrate ZaliQL: a
SQL-based framework for drawing causal inference from ob-
servational data. ZaliQL supports the state-of-the-art meth-
ods for causal inference and runs at scale within PostgreSQL
database system. In addition, we built a visual interface to
wrap around ZaliQL. In our demonstration, we will use this
GUI to show a live investigation of the causal effect of dif-
ferent weather conditions on flight delays.

1. INTRODUCTION
Randomized experiments (A/B testing) remain the gold

standard for causal inference; however, they do pose a num-
ber of problems. Namely, controlled experiments are not fea-
sible for ethical, economical, or practical reasons in a number
of disciplines [9]. Observational studies can be used to draw
causal inference without controlled experiments [9, 11, 7].

Computational, physical, and social scientists all increas-
ingly want to perform causal inference on big observational
data, e.g., data from social networks and biological networks.
Unfortunately, the current software for processing observa-
tional data in terms of causal inference cannot scale. R,
Stata, SAS, and SPSS all have packages [3, 5]; however, they
are designed to be used only with single table data, making
them cumbersome and often ineffective with large datasets.
For example, we found performing CEM on a dataset with
5M entries takes up to an hour using Stata, R, or SAS. This
is obviously not an effective practice for researchers.

Additionally, causal analysis is part of a larger pipeline
that includes data acquisition, cleaning, and integration. For
large datasets, these tasks are better handled by a relational
database engine which provides most of the functionality
needed for these tasks while also scaling up to large datasets.
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Figure 1: ZaliQL architecture

Figure 2: Causal analysis workflow

In this demonstration, we propose ZaliQL,1 a SQL-based
framework for drawing causal inference. ZaliQL takes the
initial step towards scalable causal inference by modeling it
as a data management problem. We show that causal infer-
ence can be approached from this perspective and that doing
so is key for scalable and robust causal analysis. ZaliQL sup-
ports state-of-the-art methods for causal inference and runs
at scale within a database engine.

2. SYSTEM ARCHITECTURE
The overall architecture of ZaliQL can be seen in Fig. 1.

The API is a set of functions that support causal inference
on data stored in a PostgreSQL DBMS. The API will be
packaged as a PostgreSQL extension. The ZaliQL API is
modeled after the MatchIt and CEM toolkits [3, 5] and in-
cludes methods for drawing causal inference from relational
data. A web GUI is also included for demonstration and
exploration purposes and is illustrated in Fig. 3.

3. DEMONSTRATION DETAILS
As the illustration in Fig. 2 shows, modern causal analysis

is an iterative process. An analyst must acquire and inte-
grate data from a myriad of sources, generate a hypothesis,
pre-process the data through a matching method, and finally
conduct the causal analysis. This linear process often must
be repeated with new matching methods, new hypotheses,
or even new datasets [4]. Note that our system does not
address the statistical validity of performing multiple hy-
pothesis testing. We will demonstrate ZaliQL by providing

1 The prefix Zali refers to al-Ghzali (1058-1111), a medieval
Persian philosopher. It is known that David Hume (1711-
1776), a Scottish philosopher, who gave the first explicit def-
inition of causation in terms of counterfactuals, was heavily
influenced by al-Ghzali’s conception of causality.



Figure 3: Demonstration screenshot described in Section 3

walkthroughs using causal investigations on integrated flight
and weather datasets.

Data: The analysis will be conducted on a spatio-temporal
join of the following datasets: (a) Flight data (105M entries)
collected by the U.S. Department of Transportation. This
dataset contains records of over 90% of U.S. domestic flights
of major airlines between 1988 and the present. It includes
the following variables: Date, AirportID, CarrierID, and De-
pDelay (departure delay); (b)Weather data (40M entries):
collected using Weather Underground API.2 It contains his-
torical weather data of U.S. airports and includes the follow-
ing variables: Code (airport ID), Date, Time, Visim (visibil-
ity in km), Tempm (temperature in Celsius), Wspdm (wind
speed in kph), Pressurem (pressure in mBar), Precipm (pre-
cipitation in mm), Snow (binary), and Thunder (binary).

Data exploration: Our demonstration will start by ex-
ploring the effect of different weather features on flight de-
parture delay. As an example, we will show that 11% of
flights were delayed when pressure was low; however, only
0.4% of flights were delayed when pressure was high. This
suggests that pressure is inversely correlated with flight de-
lay. However, after grouping by different variables such as
airport, airline, and other weather features, flight delay fre-
quency declined from 11% to nearly 0%. 3 Thus, we are
forced to reconsider if low pressure is really a causative fac-
tor for weather delays.

Causal questions: The following causal questions have
been defined: Q1: Does low air pressure cause flight depar-
ture delays? Q2: Which weather features are major causes of
departure delays? Q3: Do the findings to the previous ques-
tions differ between major airports? These questions will be
answered by ZaliQL using the following steps:

• Specifying DepDelay as our outcome of interest (effect)
as shown in Fig. 3a.

• Specifying a set of binary treatments (causes) that
could affect DepDelay as shown in Fig. 3b. Particu-
larly, the following binary treatments will be created:
LowVisibility (1 if Visim < 1); HeavySnow (1 if Prcipm

2https://www.wunderground.com
3This phenomenon is known as Simpson’s paradox and
arises frequently in observational studies [8].

> 0.3 and Snow = 1); HighWindSpeed (1 if Wspdm
> 40; 0 if Wspdm < 20); Thunder; Low-Pressure (1 if
Pressurem < 1009.14; 0 if Pressurem > 1022.69).

• Specifying a relevant subset of data for analysis. We
will select five U.S. airports with frequent weather-
related delays. Specifically, San Francisco (SFO), John
F. Kennedy (JFK), Newark Liberty (EWR), George
Bush-Houston (IAH), and LaGuardia (LGA).

Computing ATE: The primary objective of causal in-
ference is to quantify the causal effect of a binary treatment
on an outcome. It is quite common to compare an outcome
(DepDelay) between the treated and control groups. That is,
to compare subjects (flights) that receive a treatment (Low-
Pressure = 1) with subjects that do not (LowPressure =
0). A common measure to do this is that of average treat-
ment effect (ATE) which is computed, for example, for Q1,
as follows:

E[DepDelay|LowPressure = 1] − E[DepDelay|LowPressure = 0]

In this example, E[DepDelay|LowPressure = x], x = (0, 1)
is computed by taking the emperical average of DepDelay
where LowPressure is x. We show that for LowPressure ATE
is significantly large, which suggests pressure affects DepDe-
lay. However, it is known from prior analysis that LowPres-
sure alone does not serve as the sole causative factor for
departure delay. This observation thus raises the question:
Where is this difference coming from?

Confounding variables: The difference is a product of
confounding variables, which make it difficult to establish a
causal link between a treatment and outcome. This is often
the case in real world analysis as the myriad of variables in-
volved greatly complicate understanding a phenomenon. In
this example, we will show that the observed positive effect
of LowPressure was actually the result of the confounding
influence of other factors including low visibility, snow, and
thunder. Specifically, we will show that Low Pressure is asso-
ciated with unsettled weather conditions such as LowVisibil-
ity (see Fig. 4). The average of LowVisibility in the treated
group is much less than that of the opposite group. Thus,
it is unclear that the observed DepDelay difference between
the groups is caused by LowPressure or LowVisibility.

https://www.wunderground.com


Figure 4: Confounding influence

Adjusting for confounding variables: For the sake of
drawing valid conclusions to the causal questions, we must
adjust for these confounding variables. Conceptually, adjust-
ing for one confounding variable is easy. It involves parti-
tioning the data into similar groups with similar confound-
ing influence measures. Next, the ATE is computed using
the weighted average of the effects in each group. However,
real world causal inference is much more complicated as it
involves many confounding variables. Fig. 4 shows some of
the many confounding variables in this example. In this case,
the groups become overly specific and begin to lack enough
units to create a meaningful calculation of the ATE.

Sophisticated techniques are required to adjust for a large
set of confounding variables. ZaliQL implements two pri-
mary approaches that are commonly found in statistics:
coarsened exact matching (CEM) and propensity score match-
ing (PSM) [4, 10]. The goal of matching is to prune data so
that the remaining matched data have greater balance be-
tween the treated and control groups. In other words, the
empirical distributions of the confounding variables in the
treated and control groups are similar after matching. Once
the groups have more or less achieved a sense of balance, the
observed difference of the outcome between the two groups
can be attributed to the treatment. In our demonstration, we
will select a set of covariates deemed to confound the treat-
ments and outcome (Fig. 3c) and we will select a matching
method and adjust its tuning parameters.

Checking balance: This next step requires verifying that
the matching process improved the covariates balance. Specif-
ically, we will compare the distribution for each covariate be-
tween the treated and control group on the matched data for
all treatments. ZaliQL provides both numerical and visual
summaries for this step of the process including quartile-
quartile and mean difference plots. This can be seen in Fig.
3d and Fig. 3e.

Answers to our causal questions: Finally, we are
able to answer the causal questions created in the first step
of our process. For Q1, we will show that LowPressure has
no significant causal effect on DepDelay. For Q2, we will
identify that other treatments have significant causal effects
on DepDelay (Fig. 3f). Regarding Q3, we will report that the
major causes of flight delay at the airports included in the
study are actually different. Two sample z-tests will be used
to validate the statistical significance of the results. We will
show that the obtained results are validated by FAA reports.

Scalability: The last part of this demonstration will al-
low us to show the scalability by letting users interactively
run queries of this large dataset. This process would take
existing toolkits hours to complete; however, as seen in Fig.
3g, ZaliQL can process 100M entries in less than a few min-
utes, whereas other systems such as R, SPSS, or SAS, take
up to an hour just to process 5M entries.4

4We note that the developers of statistical software packages
for CEM have identified ZaliQL as a more scalable approach:
see http://gking.harvard.edu/cem.

Unit Covariates Treatment Treatment Control Causal Effect
X assignment T outcome Y (1) outcome Y (0) Y (1)− Y (0)

1 X1 T1 Y1(1) Y1(0) Y1(1)− Y1(0)
2 X2 T2 Y2(1) Y2(0) Y2(1)− Y2(0)
. . . . . . . . . . . . . . . . . .
N XN TN YN (1) YN (0) YN (1)− YN (0)

Figure 5: The Potential Outcome Framework

4. INTERNALS

4.1 Basic Formalism
The basic causal model in statistics is called the potential

outcome framework (POF) [11]. In this model, we are given
a table with N rows called units indexed by i = 1 . . . N
(see Table 5). The binary attribute T denotes treatment as-
signment. X is a vector of background characteristics, (e.g.,
airport, airline, weather . . . ) of each unit, called covariates,
unaffected by treatment; and the two attributes Y (0), Y (1)
represent potential outcomes: Y (1) is the outcome of the unit
if it is exposed to the treatment and Y (0) is the outcome
when it is exposed to the control.

The treatment effect caused by the treatment Ti for the ith
unit is defined as Yi(1) − Yi(0). The goal of causal analysis
is to compute the average treatment effect (ATE):

ATE = E[Y (1)− Y (0)] = E[Y (1)]− E[Y (0)].

The so-called fundamental problem of causal inference is
that for each unit we only know either Y (1) or Y (0) but not
both. For example, each individual flight has either Low-
Pressure=1 or LowPressure=0, so only one of DepDelay(1)
or DepDelay(0) is available for each row. Thus, further as-
sumptions are needed for estimating ATE.

The strongest is the independence assumption: the treat-
ment mechanism is independent of the potential outcomes,
i.e., (Y (1), Y (0)) ⊥⊥ T . This might hold in a properly con-
structed randomized trial. Then, E[Y (1)] = E[Y (1)|T = 1]
and similarly E[Y (0)] = E[Y (0)|T = 0] and so:

ATE = E[Y (1)|T = 1]− E[Y (0)|T = 0].

However, ZaliQL is designed for drawing causal inference
from observational data, where independence fails in general.
Here, statistical literature makes two standard, weaker as-
sumptions called Strong Ignorability: for all x:
(1) Y (0), Y (1) ⊥⊥ T |X = x (unconfoundedness) and
(2) 0 < Pr(T = 1|X = x) < 1 (overlap) [10].

If strong ignorability holds, one can estimate ATE by tak-
ing the average difference for each group with a particular
value of X i.e., Ex[E[Y (1)−Y (0)|X = x]]. In practice, how-
ever, a direct application of this method is impossible, be-
cause the data is typically very sparse: for any value X = x
we either have no data values at all, or very few such values,
which means that estimating E[Y (T )|T = 1 or 0, X = x] as
an average from the database leads to large sampling error.
A solution adopted in statistics is matching [10].

4.2 Matching Methods
This process involves theoretically matching each treated

unit to one of multiple control units with similar values of
the covariate attributes [4]. Closeness is defined using some
distance function between the covariate values of two units.
Given a table, R(T,X1 . . . , Xn, Y ), ZaliQL offers the follow-
ing two matching methods.

http://gking.harvard.edu/cem


CREATE VIEW PSM_Matched
AS WITH potential_matches AS

(SELECT treated.ID AS tID, control.ID AS cID,
abs(Treated.PS-Control.PS) AS distance

FROM R AS control, R AS treated
WHERE control.T=0 AND treated.T=1

AND abs(Treated.PS-Control.PS) < caliper)),
ordered_potential_matches AS

(SELECT *, ROW_NUMBER() over (ORDER BY distance) AS order
FROM potential_matches)

SELECT *
FROM ordered_potential_matches AS rp
WHERE NOT EXISTS

(SELECT *
FROM ordered_potential_matches AS z
WHERE z.order < opm.order AND z.cID=opm.cID)

AND (SELECT count(*)
FROM ordered_potential_matches AS opm
WHERE z.order < opm.order AND z.tID=opm.tID) ≤ k;

Figure 6: Propensity score matching

CREATE VIEW CEM_Matched AS
WITH subclasses AS

(SELECT *,
max(ID) OVER w subclass, max(T) AS min_treatment,
min(T)AS max_treatment

FROM Rc

Group by X
Having min_treatment!=max_treatment)

SELECT *
FROM subclasses,Rc

WHERE subclasses.X=Rc.X

Figure 7: Coarsened Exact Matching

Propensity score matching: The most common method
is k : 1 nearest neighbor matching based on propensity score
matching (PSM) [10]. Propensity score is the probability of
a unit being assigned to a treatment given a set of covari-
ates (i.e. P (x) = P (T = 1|X = x)). This method selects the
k best control matches for each individual in the treatment
group which are closer than a pre-specified caliper. ZaliQL
estimates propensity score using logistic regression.

The basic SQL statement to perform PSM is depicted in
Fig. 6. In this solution, nearest control units are identified by
means of an anti-join. In other words, all potential matches,
and their distances, are identified by joining the treated with
the control units that are closer on propensity score than the
caliper. Then, this set is sorted in ascending order of dis-
tances. Additionally, the order of each row in the sorted set
is identified using the window function ROW_NUMBER. Finally,
k closest controls are selected as the matched units. Note
that ZaliQL generates more efficient SQL statements using
recent developments in spatial-databases (see e.g., [6]).
Coarsened exact matching (CEM): In this method,

the vector of covariates X is coarsened according to a set of
user-defined cut points or with a discretization algorithm.
All units with similar coarsened covariate values are placed
in unique groups. Then, groups with at least one treated and
one control unit are retained while all others are discarded
from data. We let X be the coarsened version of X and Rc

be a coarsened version of R. As depicted in Fig. 7, CEM is
essentially a GROUP-BY-HAVING query.

We observed that CEM is an “Iceberg query” in the sense
that it is a GROUP-BY-HAVING query where the output
size is typically much smaller than the input (i.e. the tip of
an iceberg). Iceberg queries have been studied extensively
in databases and data mining [1, 2]. ZaliQL leverages these

techniques and the prior research on them in order to more
efficiently compute CEM for several treatments simultane-
ously, giving it a strong advantage over other softwares.

Analysis after matching: After a balanced and matched
subset of data is extracted, ATE can be computed. ZaliQL
supports a wide range of statistical tests such as z-test, t-
test, egression-based tests , and Chi-square test to compute
the statistical significant of the treatment group.

5. CONCLUSIONS
In this demonstration, we will introduce ZaliQL, a tool for

performing causal inference on large relational data within
a DBMS. ZaliQL makes the first step towards truly scal-
able causal inference by modeling it as a data management
problem. ZaliQL implements a wide range of methods for
causal inference developed in statistics with existing tech-
niques in data management. This provides scalable evalua-
tion of several causal hypothesis on relational data. Over-
all, this demonstration will serve as both an introduction
to causal inference and an illustration of the vast benefits
ZaliQL possesses over traditional statistical analysis pack-
ages.
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